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CORRIGENDA*

The upper case letter T, where it appears as a superscript to indicate the
transpose of either a matrix or a vector, was supposed to have been of dimensions
much smaller than those of the same letter used to designate a transformation (a
rotation matrix). Prior to proofreading the first typewritten draft, the author was
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appears so frequently in his handwritten work. In the interest of reducing time and
effort spent on publication it was decided (regrettably) not to replace the larger size
letter T, where it appears as a superscript, with a more suitable symbol at the
typist's disposal.

* Technical Memorandum by L. P. Tuell entitled "Equations of Motion of a Space
Station with Emphasis on the Effect of the Gravity Gradient."
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TECHNICAL MEMORANDUM

EQUATIONS OF MOTION OF A SPACE STATION WITH EMPHASIS

ON THE EFFECT OF THE GRAVITY GRADIENT

SECTION 1 — MODEL DESCRIPTION

The class of space stations treated in this report does not include space sta-
tions with the most general configuration conceivable. The station model dealt with
herein is comprised of a rigid central body supporting several flexible appendages,
smaller rigid bodies, and point masses. The smaller rigid bodies include swivel
engines and rotors while the point masses may be part of the mechanical analog of a
consumable liquid aboard the carrier or may represent small bodies having a pre-
scribed motion relative to the carrier (trim masses, for example, installed for the
purpose of attitude control). Each flexible appendage admits 3-D bending and has
at most two "rigid body" rotational degrees of freedom relative to the central body.
The flexible appendages are not interconnected. The disturbing effects of crew
motion on vehicle attitude will be ignored.

This particular choice of space station model was strongly influenced by the
author's brief acquaintance with the SEPS vehicle of the early 1970's to which he
applied certain of his previous developments [1] in describing its motion.

SECTION 2 — COORDINATE SYSTEMS

The formulations of this paper required the introduction of the following
rectangular coordinate systems.

XNYNZN — The N-frame is a Newtonian frame whose existence is postulated (other-

Y

S°8"Ss

XpYply —

Z —

wise there would be no Newtonian mechanics). It is stipulated here that
the N-frame is oriented as the S-frame defined below (this being merely
for convenience, actually). The N-frame will enjoy brief recognition, its
introduction being made solely for the purpose of preventing failure to
include certain terms in the equations of motion (in particular, the vector
translational equation). See Figure 1.

The S-frame has origin at the geometric center of the reference ellipsoid
with the XS axis directed through the mean vernal equinox of a specified
epoch, the ZS axis directed as the Earth's mean spin vector, and the Yq
axis (lying in the mean equatorial plane) so directed as to make the sys-
tem right-handed. The unit vectors YS’ —58’ and KS which span the
S-space are directed as the XS, YS’ and ZS axes, respectively. The
S-frame is coordinate system No. 4 of Reference 2.

The origin of the "Earth fixed" or E-frame coincides with that of the
S-frame and the ZE axis is directed as the ZS axis. The XEYE plane is

the mean equatorial plane, the XE axis being directed through the prime
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meridian (for all t > to) and the YE axis directed so that XEYEZE is
right-handed.

The B-frame (the structural axes system), also right-handed, is at rest
relative to the rigid central carrier, and its origin and orientation may be
arbitrarily chosen relative to the central body. Notice that this definition
does not require that the origin of the B-frame be embedded in the cen-
tral body, though such may be the case if deemed more convenient. (In
the early Saturn vehicles, for example, the structural axes had origin

100 in. behind the engine gimbal plane.) The unit vectors i —j’, and k

spanning the B-space are directed as the X, ¥, and Z axes, respectively.
See Figure 1.

The "body" axes system (herein designated the B-frame) has origin at
the instantaneous center of mass (CM) of the entire vehicle system and
is oriented always as Xyz (the B-frame). The origin of xyz has position

vector T relative to Xyz. As a consequence of the redistribution of

CM
of mass due to bending, motion of internal parts, etc., the vector rCM
will vary in both direction and magnitude. The unit vectors 1, ], and k

also span the B-space. See Figure 1.

The i-frame, a right-handed system, has origin at the "idealized" point

of attachment of the 1th

flexible appendage, the X, axis serving as the
axis of rotation about which flexible appendage i can rotate (through the
angle e.) relative to the rigid central body. Bending displacements of
points belongmg to flexible appendage i are referred to axes x. iYi% that is,
by the symbol At = A(Ii, t) is meant the displacement due to bendmg of
the point which had position vector ?i (referred to Xiyizi) before deforma-
tion. The unit vectors i;, Ti’ and iii span the i-space (i =1, ..., NA),
these being directed as the X Yy and z; axes, respectively. It should
be remarked here that the attachment point, being a point of the central
body, does not itself undergo a "bending" displacement by virtue of the

assumed rigidity of the central body. See Figure 1.

These axes have origin at the instantaneous CM of flexible appendage i
whatever its configuration, deformed or undeformed. They are always

oriented as X¥i% (i=1,... NA).




XprYRi%Ri ~ The Ri-frame has origin at the CM of rotor i (i = 1, ... NR), the Xpi

axis being coincident with the axis of rotation and directed in accordance
with the right-hand rule. The Ri-frame is fixed relative to the B-frame.

It too is a right-handed system as are all the other systems of this report.

Spanning the Ri-space are the unit vectors lRI’ ?Ri’

-

and kRi'

XR’iyR{ZRi — The (Ri)'-frame is fixed relative to rotor i and coincides with the
Ri-frame at the instant the rotor begins to rotate and at such times at

which the rotor completes a revolution. (Introduction of x ' was

1 1
RiVRi%Ri
necessary because of the method of formulating the equations of motion.

3 1 1 ! 3
The angle, v i’ through which XpiYRi%ZRi rotates relative to XpiYRi%Ri
will not appear in the final results though its first and second time

-

derivatives will,) The (Ri)' space is spanned by the unit vectors iRi"

?Ri' and ERi' .

Xai¥aiZgi ~ The gimbal frame axes (Gi-frame) of the ith

single DOF (SDOF) control
moment gyro (CMG) have origin at the CM of the gimbal frame, the Xai
axis being coincident with the gimbal axis of rotation and the ZGi axis
directed as the spin vector of the gyro element. The XGi and 2g; 2Xes
are directed in accordance with the right-hand rule. The direction of

-

the XGi axis is invariant in the B- and B-frames. The unit vectors iGi’

j)Gi’ and k span the Gi-space.

Gi

th

— The gyro element axes of the i SDOF CMG (the gi-frame) have the same

Xgiygizgi
origin as XaiYaGiGi’ it being assumed here that the gimbal and gyro
element have a common CM. The Zgi axis is directed as the gyro element
spin vector. The gi-frame is fixed relative to the gyro element and coin-
cides with the Gi-frame at each instant it completes a revolution. The

unit vectors ;gi’ ]T)gi’ and Egi span the gi-space. (As with the xRiyRi ZRi

frame it was the method of formulating the equations of motion that
required introducing the Xgiygizgi frame. ' The angle ”pgi’ through which
the gi-frame rotates at the constant rate ¢ j & w,; relative to the Gi-

gi
frame, will not appear in the final results, but wgi will be present in

several terms.)

Associated with a two degree of freedom (2DOF) CMG are the following four
coordinate systems and corresponding vector bases. All are right-handed and have
the same origin, namely, the CM of the outer gimbal-inner gimbal-gyro element com-
bination (it having been assumed that those three components of the CMG have a
common CM.,)



XaYGBZGB The gimbal base frame (GB-frame) is fixed relative to the B-frame and

coincides with the OG-frame when the outer gimbal angle § = 0. The

oG
. . e e -
GB-space is spanned by the unit vectors isp’ IgB’ and kGB‘

XOGyOGZOG_’_ The outer gimbal space (OG-space) is spanned by the unit vectors

oG’ ]OG’ and Kq .
rotation axis and its direction is invariant in the GB- and B-frames. The

The Z0G axis (directed as kOG) is the outer gimbal

OG-frame is oriented as the IG-frame when the inner gimbal angle 61G = 0.

— The inner gimbal space (IG-space) is spanned by the unit vectors IIG’

-

X1aY16%1G

]IG’ and kIG' The X1G axis (directed as IIG) is th(i inner gimbal rotation

axis. The gyro element spin vector is directed as jIG'

(The unit vector triads Yg ]2 Kg’ £ = GB, OG, IG, above are those of Reference 3 in
different notation.)
nggzg — The gyro element space (g-space) is spanned by the unit vectors 1g’ ;g

and kg' The yg axis, directed as both ]g and ]IG’ is the gyro element
spin axis. The g-frame (fixed relative to the gyro element) coincides
with the IG-frame initially (that is, at the time designated to) and at each

instant it completes a revolution.

(The seemingly absurd introduction of the axes nggzg’ never used in any of the

literature browsed by the author, is necessary to the formulations of this paper,

although the angle sog through which the g-frame rotates at the constant rate sbg = We

relative to the IG-frame will not appear in the final results. The spin rate wg’ how-
ever, will appear in certain terms of the moment equations, the outer gimbal equation,
and the inner gimbal equation.)

.th

The following is associated with the i swivel engine:

XpiVgi%Ei ~ The EI-frame has origin at the CM of swivel engine i, is fixed relative

to swivel engine i, and if sensibly oriented has one of its axes directed
as the engine thrust vector. The Ei-space is spanned by the unit

vectors ? - ]T;Ei’ and IEEi directed as x.., YEi’ and z

Ei Ei respectively.

Ei’




SECTION 3 — TRANSFORMATIONS AND SUBSIDIARY RELATIONS

The vector bases defined in Section 2 give rise to the rotation matrices* defined

below with important attendant relations.

T —

where

The upper case letter T (when not used as a superscript to indicate the trans-
pose of the matrix or column vector to which it is attached) will denote the
rotation matrix defining the transformation T(S+B), the literal translation of
the symbol T(S+B) being "transformation of the resolution of a vector on the
S-vector basis to the resolution of that vectér on the B-vector basis," or, more
succinetly, "transformation from the S resolution to the B resolution." From
the definitions of the B- and B-frames, it should be evident that T(S+B) and
T(S+~B) are completely equivalent. (Insofar as consistency in notation is con-
cerned, some will be eager to point out, in view of certain definitions to follow,
that better notation might have been realized by attaching the subscripts SB to
T. Though the author will be the first to agree that attaching the subscripts
SB to T would, for the sake of consistency, be better, his frequent use of the
letter T without subscripts in both years past and recently has left him almost

impervious to change.)

The matrix T cannot be completely specified until an "Euler sequence" has been
decided, that is, until one prescribes the sequence of rotations which the S-
frame would have to undergo to assume the orientation of the B-frame (and
hence of the ﬁ-frame). For a two, three, one sequence through the angles

Yo Py and s respectively, T is given by

T = [*"r](l) [npy](3) [wp](z)

0 i w
- 1. .

*All rotation matrices herein are "proper" rotation matrices.



cos ¢y sin (py 0
[wy](3) = | sinvy cos ¢, 0 (3-0.2)
| 0 0 1.
1. 0 0
["pr](l) =10 cos ¢, sin ¢, . (3.03)
. 0 -sin 9, cos ¥,

Following the method laid down in References 4 and 5, among others, it is shown in
Reference 1 (and no doubt elsewhere) that corresponding to the Euler sequence above
the angular velocity, J)’B = [wl, Wo> w3]T, of the B-frame (or B-frame) relative to

the S-frame is given in terms of the Euler angles and their first time derivatives by

W sin 0 1 :
1 Yy “p
“p = we | = Cos apy cos ¢, sin ¢, 0 goy (3.04)
wg -CcoSs soy sin sor cos v, 0 ¢r

The vector JB as given above has the B (and ]~3) resolution. It is also shown in

Reference 1 (and in literature not cited) that
d IO _
a—t—T = T = QT , (3-1

the skew symmetric matrix @ being given by

3 Y2
Q= | -w, 0 Wy (3-2)
Yo o 7Y 0

A trivial consequence of the equation expressing T in terms of T and the components
of &?B, obtained by a simple transposition of its left and right members, is the
relation

6




T = pT T (3-3)

which is used repeatedly in the development of the equations of motion. It is worthy

T

of note in passing that the skew symmetric matrix @~ has the property that

0 “wg wgy VBl
T _ _ . -» )
Q VB = wg 0 Wy VB2 = wg X VB (3-4)
~wg 0y 0 VB3
where \_/ZB = VB 1_i> + VB 2?+ VB3I; is an arbitrary vector expressed on the B (or B)

vector basis.

With flexible appendage i (1 < i < NA) one associates the following rotation

matrices.

Ti = T(B + i)e is a prescribed rotation matrix of constants, peculiar to a specific

=0
i
vehicle configuration, defining the transformation from the B (or E) resolution
to the i resolution when ei = 0, that is, when the i-frame is in its "null" orien-

tation relative to the B-frame (or ﬁ-frame).

1. 0 0 "|
Ji = [ei](l) =10 cos 6; sin o (3-5)
0 -sin 8. cos 6,
1 1

Ti = jiTi = T(B~i), the rotation matrix defining the transformation from the B (or E~$)

resolution to the instantaneous i resolution. It is not difficult to establish the

useful relations

. . 2 .
ST _&T T ST _xT ~T7 , 3T )
T,7 =T, I , I, =T, @ +9,7) (3-6)
where
0 0 0
~T _ = _ -
2,7 = 6 0 0 1. . (3-7)
0 1. 0




It is easy to see further that with the notation Bi = , the symbol ‘G'i denoting the

.1
ii
angular velocity of the i-frame relative to the B- or B- frame (and expressed on the

i vector basis),

= ~
V. = 0. x
1 1 1

— -
i

(3-8)

>
for any vector Vi expressed on the i vector basis.

Pertinent to the ith SDOF CMG are the following transformations, definitions,
and consequential relations.
TGio = T(B~Gio), a prescribed rotation matrix of constants defining the transforma-
tion from the B (or B) resolution to the Gi resolution when the gimbal angle
. = 0 and that of
Gi

(Here, by direction is meant direction

SGi = (0. The direction of Kgi (and hence of KGi) when §

?Gi determine the transformation T

" Gio”
in the B- (or B) frames.)

1. 0 0
Lai = [GGi](l) =10 Cos & sin ¢ . (3-9)
0 -sin §

Gi 9% i

TGi = TGiTGio = T (B~Gi), the transformation from the B (or B) resolution to the

Gi resolution.

Tgi = [¢Gi](3) = T(Gi+gi), the transformation from the Gi resolution to the gi resolu-
o
tion.
Tgi = igiTGi = T(B+gi), the transformation from the B (or B) resolution to the gi
resolution.

With the definitions:

—

0gi = éGi ?Gi = angular velocity of Gi frame (gimbal frame) relative to the B and B

frames expressed on the Gi vector basis (3-10)
0 0 0

T _ ; )

26i= %gi | © 0 1. (3-11)
0 1. 0




-

Yoi = fai Kgi T Ygi Kgi

\
4

relative to the Gi frame

0 -1. 0
ol = 1. 0 0
gi = “gi
0 0 0
there follows,
. T T T
Tai *Tgi %i

T -> - —>
QGi VGi = Ui X V.. (for any vgctor VGi
vector basis.)

T —> e — —> .
8 . V .=w .x V . (for any vector V i expressed on the gi

gi gi gl €1 vector basis.)

<~ T ~ T T
T T

. = . Q .

gi gi ‘“gi
.T T T AT T T
Toi “Tai %i Tgi *Tgi %i

Among other SDOF parameters presenting themselves in the derivation

moment equation and gimbal equation are

161 0 0
XX
Gi _ Gi . . . .
I7 = 0 Iyy 0 |= inertia matrix of gimbal referred to x
0 o 14l
ZZ
181 ¢ o
XX
gi _ gi s . . .
I=" = 0 Iyy 0 = inertia matrix of gyro element referred to
. gi _ gi
0 0 IE; Xgi ygi zgi (IXX Iyy assumed)

an important consequence of the assumption Ifg( = 15; being

= angular velocity of the gyro element (gi frame)

expressed on the Gi

Gi YGi Zgi

>

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

of the

(3-19)

(3-20)




~ T i ;
gl » - 81 -
Tgi =" T i I (3-21)

from which it follows that

T gl _ T gl _
Tgi I Tgi = TGi I TGi . (3-22)
Also appearing in the moment equation are the vectors BGi" ?’Gi" and ‘Kgi" the

prime indicating the B (or ’]-5:) resolution. They are defined by
. Sai
Y _ - _ —> _ _

“ai “ Tai “ci” Taio Tai Yci” Taio Yai” Tgio | (3-23)

X} 0

Sai
PRI 0 (3-24)
“Gi T ‘Gio

0

0

R S S S S T i 3-25

gi = Tgi Ygi” Tagi Tgi “gi T “gi Taio | S Sai (3-25)

cos 6Gi

Transformations and subordinate relations pertinent to a 2DOF CMG follow.
TBGB = T(B+~GB), a prescribed rotation matrix of constants defining the transforma-
tion from the B (or E) resolution of a vector to its gimbal base (GB) resolution.

TGBOG = T(GB+-0G) = [§

OG resolution.

OG](3)’ the transformation from the GB resolution to the

TOGIG = T(OG~>IG) = [GIG](l)’ the transformation from the OG resolution to the IG
resolution.

TIGg = T(IG~»g) = [Wg](Z)’ the transformation from the IG resolution to the g
resolution.

TBOG = T(B~>0G) = TGBOGTBGB = [60(}](3) TBGB = T(B+0OG), the transformation

from the B (or ﬁ) resolution to the OG resolution.

10




Tgig = T(B+IG) = T(B~+IG) = T T T = [6 the

BI ocigraeoGcTBGB = %161 (1) %0c!(3) Trar®
transformation from the B (or B) resolution to the IG resolution.

TBg = T(B»g) = TIGgTBIG’ the transformation from the B (or B) resolution to the

g resolution.

With the symbols JOG’ BIG’ and Jg denoting the angular velocity of the OG-

frame relative to the GB-frame (and hence relative to the B- and B-frames), the
angular velocity of the IG-frame relative to the OG-frame, and the angular velocity
of the g-frame relative to the IG-frame, respectively, one has

5 -

“o0g ~ %og Kog

N > e

“16 = %16 16 T %16 foa (3-26)
“g " “glg T “g G
and the associated skew symmetric matrices
[ 0 -1. 0 \
T .
QOG =35 1. 0 0
0 0 0
B .
0 0 0
of =% o o0 -1 (3-27)
IG  "IG ’
0 1. 0
0 0 1

-1. 0 0
/

having the properties

T

QOG VOG = g X VOG (for arbitrary VOG expressed on the OG-vector basis),

11



T 3 i ; v i
= he IG-
QI G VIG 4g X VIG (for arbitrary V expressed on the IG-vector basis),

1G

\_7) =% x {;g (for arbitrary {;g expressed on the g-vector basis).

From the definitions above one can easily deduce that

TGBOG = Tapoc %0G

Tgoe = Thog %G

Toaia = Toaia %G

516 = Toic Toaic %oe Tocia * 9 Q) (5-28)
T’IrGg - T’II‘Gg Qg

ng - (TEOG Qg(} TgGIG * TgOG TgGIG Q;rG) T’II‘Gg + TgIG T'ITGg Qg ,

these relations being of considerable utility in subsequent derivations. Regarding the
derivations to follow, it should be remarked that the inertia matrices of outer gimbal,

inner gimbal, and gyro element, denoted, respectively, by IOG, IIG, and Ig, are

supposed diagonal with IOG = IOG, IIG = IIG, and I8 =18 . The matrices IOG, IIG,
. 0 XX vy’ vy Z7 XX ZZ
and I® are, incidentally, referred to XoaYoaZoG’ *igYicZig’ and nggzg’ respec-

tively. Abbreviations of certain combinations of these matrices appear in the moment
equation. They are defined as follows.

0G+IG+g _ T .OG T G . .g
Ig = Tgogl = Tpog * Tpig ¢~ +1°) Ty
G+ _ IG | g
(3-28.1)
I1G+g _ T IG+g
Ig = Tgig L Tp1g
g -l 8 - 7L g
Ig = Tgg I" Tpg = Tpia I Tmig

12




The trace of Ig is denoted by Tr(Ig), that is,

Ey _ & 3 £ _ )
Tr(1®) = IXX + Iyy + Izz , &£ =0G, I1G, g . (3-28.2)

The first time derivatives of the vectors in equation (3-26), as measured in and
expressed on the indicated vector bases, are obviously

d e _
(d—t> “16 = 16 = %16 UG (3-29)
d -> > . T -> _
<~> W, Tw, =Tw_ j. =0 (wg = constant)

The B (or B) resolutions of the vectors of equations (3-26) are given by

—>

' T e
w

oG -~ Tog “ogG

- _— T - _
g = TBIG e (3-30)
— T —

' =T
g T "Bg “g

while the first time derivatives (as measured in the B- or B-frame) of the primed
vectors of equations (3-30) are given by

d - _ > _ T S5 - ' -, _
(HT>B “1¢' = Y1’ = TBI1G “Ic * Y0G ¥ “IG (3-31)

13



Attention is called here to a remark concerning derivatives that appears as the first
sentence of the paragraph following equation (4-19).

Pertinent to the ith swivel engine is the transformation TEi = T(B~Ei), the

transformation from the B (or ﬁ) resolution to the Ei resolution, whose time deriva-
tive is shown in Reference 1 to be given by

Tpi = %3 Tgg - Tgg @ (3-32)
where
- 1
(3) (2
0 UEj “Ej
T | (D .

QEi = QEi = YR 0 g s (3-33)

(2) (D

WE{ CEj 0

the wé]i)’ j =1, 2, 3, being the components of the vector ESEi which is here the

angular velocity of the Ei-frame relative to the S-frame and is supposed expressed
on the Ei vector basis, that is,

vgi = Tpy (U * ugg) (3-34)

the symbol (I)’Ei' denoting the angular velocity of the Ei-frame relative to B (or E)

frame and expressed on the B (or ]§) vector basis. Among other relations satisfied
by TEi are the following,

— 1
Tpi = Tgi g3
(3-35)
Tpi = 9gi Tgi
where
) ()
0 Vg4 “Ej
AT () (1)
“gi = "“gi T | “Ei 0 “Ej ’ (3-36)
1(2) @Y
YEi YgEi 0

14




and

~ (3) o~ (2)
0 Ui gy
~ _ =T _ | ~ (3 ~ (1) -
Opi = 9gi T “pi 0 Upi . (3-37)
~ (2) ~ (D
“Ei YEj 0

the “’I:I(i])’ j =1, 2, 3, being the components of &)'E‘i and the BEi(])’ j=1, 2, 3, those

of the vector 4. = T.. & which is the angular velocity of the Ei-frame relative to

Ot YEi Ei “Ei
the B (or B) frame expressed on the Ei-vector basis. An interesting consequence of

the last two expressions for TEi is the similarity transformation,

T~

Tgi g3

1 - -
QEi TEi . (3-38)

Complete specification of TEi and a;l'ili cannot be made until a "B to Ei Euler sequence"

is prescribed, that sequence being dependent upon the point of application and direc-
tion of the thrust delivered by the engine, the engine actuator arrangement, the sign
convention for engine deflections, etc.

The symbol IEl appearing in the moment equation denotes the inertia matrix of
swivel engine i referred to the axes XpiYRiZEi (defined in section 2).

™ s " L e .. .th . - PR
Transformations pertaining to the i~ rotor are the following:

TRi = T(B~»Ri), the rotation matrix of constants defining the transformation from the

B (or 1§) resolution to the Ri resolution. Its elements are functions of the
: 5 T .. . .
components of the unit vector ARi =z HRi’“Ri’\)Ri] which specifies the posi
tive direction (relative to the B-frame) of the spin axis (the XRi axis) of rotor
i. A frame oriented as the B-frame could be carried into the Ri orientation by

_ -1
the 3, 2 sequence thf«;ugh the angle; eRi = tan (uRi/ARi), 0 < eRi < 21, and
_wRi where wRi = tan (\)Ri/ 1 - YRi ), -m/2 < wRi < 7w/2, in which case T
determined by

. is
Ri

jRi = T(Ri~(Ri)") = [‘pRi](l)’ the transformation from the Ri to the (Ri)' resolution.
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TRi = JpiTg; = T(B+(RD)"), the transformation from the B resolution to the (Ri)'
resolution.

From the above it is a trivial matter to show that

. . 2 .
~T _ =T =T ~T _ =T T ~T _
Tri " Tri %i -+ Tri~ Tri ®ri* Wi > (3-40)
The skew symmetric matrix 5;1;1 being given by
0 0 0
ok =510 o -1 G, =¥ (3-41)
Ri Ri ’ Ri Ri ~’
0 1. 0
with the obvious property that
AL Vo= x V (3-42)
Ri "(Ri)! Ri (RD'
where the vector V(Ri)' is an arbitrary vector expressed on the (Ri)' vector basis
and aRi denotes the angular velocity of the (Ri)'-frame relative to the B-frame
expressed on the (Ri)' vector basis. By definition of 5111 one can write
R 7T o~ 7, -
“gi = ¥Ri i’ = “gi ki (3-43)
the scaler ¢Ri = mRi admitting of both positive and negative values to correspond to

positive or negative rotations (in accordance with the right-hand rule) about the rotor

spin axis. Obviously,

— -

_{d = o
=\ F7 . = . 1=V ' _
v (dt >(Ri)' “Ri ~ “Ri 'Ri T "Ri 'Ri (3-49)

gl -

and furthermore, if Z)'Ri' denotes the B (or ﬁ) resolution of the angular velocity of

the (Ri)' frame relative to the B (or }§) frame then

- , _ ~T = -
“gri' = Trj “Rj (3-45)
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and it follows that

> d S ~T ~T = ~T = ~T 3 T =
't = —_— ' = = = -
“Rj (dt )B “Ri' = TRi “Ri “Ri * TRi “Ri = TRi ®Ri = TRi “Ri * (3746
The inertia matrix, IRl, of rotor i referred to xhiyhizhi is herein assumed
diagonal with II;ly = Ifilz Under these assumptions it follows that
T Ri _ Ri i}
TJri 1 Jgi =1 (3-47)
and hence that
~T Rix _ ,.T 4T ,Ri _ T (Ri _
Tri T Tri= TRiJri ¥ Tri Tri = Tmi ! Tmi > (3-48)

a fact used in arriving at equation (4-67) in the following section.

Passage from the S resolution to the E resolution is effected via the transforma-

tion
TSE = T(S+E) = [ocP + g (t—to)](3) R (3-49)

the symbol op denoting the right ascension of the prime meridian at time t, and W
the magnitude of the Earth's spin vector.
Not to be overlooked, and certainly not the least important of the several trans-

formations discussed herein, is the relation between the unit vector triad URUW, U,

associated with a point of the earth's exterior gravitational field and the triad T.J. K

s's"s’
that being
Up Is
uy | = [-61(g lelgg | Ig (3-50)
U Kg

where o and § are the right ascension and declination, respectively, of the field

., = T _ - - - Lo
point. If RS = [XS, YS’ ZS] = XSIS + YSJS + ZSKS denotes the position vector of
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the field point referred to the S-frame then the angles a and § are given by

o= tan_l(YS/X 0<a<2r

$

_ oan 1l T u 8 | - 2 2 2 ~
6 = sin (Zg/Ry) , 5 <8 <T RS—|RS|—/§S Yt ez ® (351

If ) is the longitude (positive east of the prime meridian) of the field point then o is
also given by
a = ap toug (tt) + 1 . (3-52)

The unit vectors Ups E%, and ﬁd can also be expressed in terms of _’S’ ES’ and ﬁs

as follows.
up = RS/RS
. Ry x Ry ) )
u, = s R, # tR, K s (3-53)
A = 2 S S S
|KS X RS|

E

Relative to the rotating E-frame (the earth fixed frame XEYEZ ) the field point has
position ﬁE = [XE, YE’ ZE]T = T(S+E) ﬁS so that X and & can also be computed in

accordance with

A = tan 1 (Yp/Xp) »  0< A< 2n
(3-54)

_ : '1 i it _ =2 _ —»>

§ = sin (ZE/R) ;38 <3 , R = ]REI = |RS| ,

and in terms of B’ :fE’ and I—EE the unit vectors GR’ GA’ and 36 are given by

ug Iy
u, = [—6](2) [A](3) JE (3-55)
Us Kg
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In Reference 6, the acceleration due to the Earth's gravity at the point with spherical

coordinates (R,),8) referred to the Earth fixed frame XEY is resolved into its

Z
E”E
radial, longitudinal, and latitudinal components, these being the GR component, the

u, component, and the 1_; 5 component, respectively.

SECTION IV. THE EQUATIONS OF MOTION

The coordinates _c}efining system configuration include the following: The com-
ponents of the vector i;”s = [;(S, SNZS, ES]T, the position, referred to the S-frame, of
the origin of the B-frame (the stzuctural axes Xyz); the Euler angles sop, wy, and *Pr
specifying the orientation of the B-frame (and also that of the B-frame) relative to
the S-frame; the angles ei, i=1, ... NA, the symbol ei denoting the angle through
which the it

rigid central carrier; the generalized bending displacement coordinates n;, j=1,

flexible appendage* is permitted to rotate as a "whole" relative to the

Ni’ associated with the ith flexible appendage, i = 1, ... NA; the displacement gpi’

i=1, ... NP, of the "point" mass m i from its equilibrium position; the angular

deflections Byi and Bpi of the ith swivel engine, i = 1, ... NSE; the gimbal angle SGi
of the i™ SDOF CMG, i= 1, ... NSDOF; the outer gimbal angle 6. and inner
gimbal angle 6 .. of the ith two DOF CMG, i, ... N2DOF.

The principal of virtual work finds itself of considerable utility in developing
the equations of motion. That principle**, as applied to dynamic systems, states that
in an arbitrary virtual displacement of the system (compatible with the constraints)
the virtual work done by the inertial forces plus that done by the external forces
equals the change in strain energy. On invoking the principle of virtual work and

appealing to the independence of the generalized coordinates defined above, it follows
that

= (MOON) R (SUN)

T
3R . Uar R U }
S > M S S 'S 3D oU
—f SR 4D = dm + Q. - 35 = 5q 4D
(m) 3q { S [RS(MOON)13 |RS(SUN)|3 q 3q 3q

where g may be any of the aforementioned coordinates.

* Later in this section, attention will be directed to a system wherein each flexible
appendage is allowed two rotational degrees of freedom.

** See Reference 16, pp. 114-115.
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In the volume integral in the left member of equation (4-1), ﬁs denotes the
position referred to the S-frame of a generic point of the vehicle, while ﬁs denotes
the second time derivative, as measured by an observer in the S-frame, of the vector
ﬁs' (It should be remarked here that the number of dots above a vector symbol
indicates the order of the time derivative of that vector as measured by an observer
in the reference frame on which the vector is expressed.) The superscript T on ﬁs

T is the transpose of the 3 x 1 column vector ﬁs

in equation (4-1) indicates that ﬁs
It is to be understood that when used as a subscript on an integral sign as in equa-
tion (4-1) above, the letter m simply indicates that the integration extends over the
volume occupied by the entire vehicle system, while if it appears as one factor of a

product, it denotes the numerical value of the mass of the entire system.

The generalized force Qq is such that the product quq is the virtual work
done by those forces not derivable from either the potential* function U (as herein
defined) or the dissipation function D when only the coordinate q undergoes the

virtual displacement §q, the forces alluded to being (in this paper) the gravitational

forces of Earth, Moon, and Sun; direct solar radiation; aerodynamic forces; the
torques applied to rotate the flexible appendages (relative to the rigid central carrier);

and the torques applied to rotate the CMG gimbals. Accordingly, Qq must be given
by

f Ry f Ry
Q = 5q ¢ ForaviTy,s’ * <q_ ‘4 Farro,s’

T (m (A)
3R.
f S @ F ) + M (4-1A)
3q SOLAR,S a
(A)
where
F - p(EARTH) + F(MOON) + (SUN)

GRAVITY, S GRAVITY, S GRAVITY, S GRAVITY, S

11

GRAVITATIONAL FORCE EXERTED BY EARTH, MOON,

AND SUN ON THE ENTIRE SYSTEM

*The symbol U in equation (4-1) is better termed the "strain" energy function. Use
of the term "potential function" should not mislead the reader to believe that "every"
force for which there exists a potential function "should" be derivable from U.
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FAERO, g = AERODYNAMIC FORCE ON THE ENTIRE SYSTEM

FSOLAR, g = RESULTANT OF DIRECT SOLAR RADIATION PRESSURE ON

SURFACE AREA
the subscript S again being indicative of the S-resolution, and where, necessarily,

q#6,i=1, ... NA

q#8gp i=1, ... NSDOF

,/f{q = 0 if (4-1B)
q #3855 i =1, ... N2DOF
q#8gp i=1, ... N2DOF

the symbol J{q denoting the torque applied to impart a change in the coordinate q

when q is any of the angular coordinates 6,5 GOGi’ or 6IGi (for each i over the

8 ey
respective ranges). The significance of the su(glscript m on the first integral sign in
the right member of (4-1A) has already been discussed. It should be self evident
that the subscript A on the second and third integral signs in (4-1A) simply indicates
that the integration extends over the surface area of the entire vehicle (actually that
portion of the surface experiencing impingement of air molecules in the case of the
second integral and that part of the surface exposed to direct solar radiation in the
case of the third integral).

F’(MOON) and F(SUN)

The most simple of all approximations to GRAVITY, S GRAVITY, S

will here be considered satisfactory. They are

F’(MOON)

~ 2 (MOON) 2CM, 1 3(MOON) =CM,3
GRAVITY, S =~ ™'m By - R/ Ry - Ry | (4-1C)
#(SUN) ~ 2(SUN) _ 3CM, ,,3(SUN) _3CM,3 B
FGraviTy, s - ™ (Rg Re /R Rg | (4-1D)
where
W, = product of universal gravitational constant and mass of Moon

Mg = product of universal gravitational constant and mass of Sun
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R(MOON) = position vector of moon referred to the S-frame

s
f{gSUN) = position vector of sun referred to the S-frame
»CM _ = =2

Re™ =Ryt T T'cm

T = position of vehicle CM referred to the E—frame,

CM

R(MOON)

the components of R(SUN) being presumed known tabular functions of

time, that is, avallable from the ephemerldes of moon and sun. The far more detailed

approximation to the B-resolution of the vector F(EARTH) , herein denoted by
GRAVITY, S

—

FgB’ is provided by Appendix A.

The vector sum
*(MOON) y ﬁ(SUN)

M S S S
N (4-1E)
MOON) ;3 >(SUN) 3
3 )| RSSO

appearing within braces in the left member of equation (4-1) is merely an approxima-
tion to the acceleration of the S-frame relative to the Newtonian frame (the N-frame)
and is realized by treating Earth, Moon, and Sun as point masses and ignoring all

forces on the earth other than the gravitational forces of moon and sun. See Figure 1.

Subtracting m times the first term of the expression (4-1E) from both members
of (4-1C) followed by a pre-multiplication by the rotation matrix T = T (s+B) gives

the vector

5 (MOON) _ zCM 7 (MOON)
FMOON) _ o S S _ 8 (4-1F)
gB M (MOON) =CM,3 ;3(MOON) 3

| -ESM)P RS |

appearing in the translational equation below. A similar combination of the second
term in expression (4-1E) with the members of (4-1D) gives, after a pre-multiplication

by T, the vector

+(SUN) _ =CM ~>(SUN)
FSUN) _ g { Rg Rg } (4-16)
B S ~(SUN)  3CM 3 SUN
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also appearing in the translational equation.

One will notice that regarding the S-frame as Newtonian (as the author has
seen some people do) would result in the omission of the expression (4-1E). Although
the S-frame does not rotate relative to the N-frame, it still cannot qualify as Newton-

ian by virtue of its acceleration relative to the N-frame.

The author of this paper has no comment regarding the significance of the
error introduced by the complete neglect of electromagnetic forces; reflection of solar
radiation by the earth and its atmosphere; direct thermal radiation from the earth;
micrometeorite impacts, the attraction of celestial bodies other than the Earth, Moon,

and Sun; etc.

The thrust is embedded in the first volume integral and the generalized force
Qq in equation (4-1), the dominant part (often called the "momentum" component)
belonging to the volume integral and the other part (referred to as the "pressure"

component) belonging to the surface integrals which comprise a part of Qq‘
The major contribution of the ith flexible appendage to the potential function U

is the strain energy UAi given by

Ny L2 2

i = _9
Z My og g ., i=1, ... NA |, (4-2)
K:

| T

Uai =
1

small deformation theory having been assumed and thermal effects ignored. The

symbol w;( denotes the frequency of undamped free vibration in the Kth natural mode
(D

whose shape function, the 3 x 1 column ZK , is a function of position Fi = [Xi’ Vi»

zi]T, referred to the i-frame (defined in section 2), of points of flexible appendage i
in its undeformed state. The generalized mass, Mi(, associated with the Kth natural

bending mode of flexible appendage i is defined by

. T .
ML = /(o’K“) sof{l) dm; , K=1, ...N, i=1, ...NA . (4-3)
(m.)
1

A remark regarding the symbol m,, similar to that regarding m, is in order here,

that being that when m; appears as a subscript on an integral sign as in equation
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(4-3), it indicates that the integration* extends over the volume occupied by flexible
appendage i, while elsewhere m, denotes the numerical value of the mass of flexible

appendage 1i.

An approximation to D here defined as one-half the rate at which energy is

AT’
dissipated through structural damping in flexible appendage i, is

N.
1 ! i i i L.i . )
DM%EE My g wp i . i=1, ... NA (4-49)
K=1

the symbol (;;( denoting the damping ratio associated with the Kth

natural bending
mode of flexible appendage i. The approximation (4-4) is based upon the assumption
of the existence of a viscous damping coefficient distribution (per unit volume) which
varies directly as density (Reference 1). Although it is generally agreed that the
viscous approximation to structural damping is inadequate, the damping force deriv-
able from equation (4-4) will herein be deemed satisfactory. On summing the expres-
sion for DAi over i (i=1, ... NA), one has an approximation to the contribution of

structural damping in all of the flexible appendages to the dissipation function D.

An elastic restoring force -K 6, and viscous damping force _Cei 6;, both of

61 i
which oppose the rotational motion (relative to the central carrier) of flexible append-
age i, give rise to the contributions

_ 2 s _ -
Uy =DK%, i=1, ...NA (4-95)

and
_ . 2 . _
Dei—(I/Z)Cei 6, , i=1, ... NA , (4-6)
to U and D, respectively.

The restraining spring and viscous damper forces, _Kpigpi and —Cpigpi’ which

impede the displacement (F,pi) of the point mass m i account for the following terms

in the expressions below for U and D.

*Context will make clear whether the integration extends over the undeformed or
deformed appendage.
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2

Uy = (UDK ;£

, i=1, ... NP , (4-7)

Dpi =(1/2) Cpi

2 . ~
gpi , 1i=1, ... NP . (4-8)

To account for the energy loss through viscous friction in the gimbal bearings
of the CMG's, one should include in the expression for D terms pertinent to the SDOF
and 2DOF CMG's, these being, respectively,

D, =(/DCy; 65, . i=1, ... NSDOF (4-9)
and
Dyog; = (D Coy 2. - i=1, ... NDOF (4-10)
Digi = UDCpg; §2.: , i=1, ... N2OF . (4-11)
The terms in U and D pertinent to swivel engine i are, respectively,
Uco = 2 Koo i(B e = Bun)2 4 Koi(Bos = Bore) (4-12)
SEi 2 PEi* "pi1 PCi YE1" "Y1 YCi
and
Dev. = L [Coo. B2 +Cou. 820 , i=1, ... NSE . (4-13)
SEi 2 PEi "Pi YEiI "Yi

In equation (4-12), KPEi
the dimension NEWTON*METERS/RADIAN. The CPEi and CYEi in equation (4-13) are
"effective" viscous damping coefficients (in pitch and yaw, respectively) having the

dimension NEWTON*METERS/(RAD/SEC), that of a viscous torsional damping coefficient.

The angles BPCi and BYCi are engine deflection commands (in pitch and yaw, respec-

and Kygj are "effective" torsional spring constants having

tively). From equation (4-12) is derivable the moment about the swivel point imparted
by the actuators, and from equation (4-13) the damping moment retarding engine

deflection. From equation (4-2) and equations (4-4) through (4-13), there follows
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i=1 i=1 -1 =1
NA Vi NA NP
_1 ZMI i2 12+12K 62+IZK 2
‘EZ K “K "K © 2 6, 1 2 Pi “Pi
i-1 k=1 i=1 i=1
NSE
1 2 2 i
) 2. (KpgiCBpi Bpci) * KymiCByiBycy | (4-14)
i=1
NA NA NP NSDOF N 2DOF
D:ZDA1+ZD9.+ZDP1+ Z De Z (Dg *Dg )
. . i . . Gi . OGi IGi
i=1 i=1 i=1 i=1 =1
NSE
+ 2 Dggi
i=1
NA N4 ) NA NP
21 i i i -i 1 1 -2
=3 2Mp g og ng t 3 Ceie1+§ZCP1€Pi
i=1 K=1 i=1 -1
NSDOF N 2DOF
1 .2 1 .9 . 9
+ = 1
: 2 Cai Sgi ¥ 2 2 Cogi %0Gi * C1gi 167
i=1 i=1
NSE
1 . 9 .9
+ = _
7 2 Cpg; Bpj * Oygy Byp - (4-19)
.

In developing the equation of motion corresponding to a system coordinate q in
accordance with equation (4-1), it is convenient, if not necessary, to first write the

volume integral / (aﬁslaq)Tﬁs dm as the sum of several integrals,
(m)
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sBY .. NSE
S = _
S 5 Ry am = + L Z S Z
(m) (m.) (mf) i=1 (mEl) i=1 (mP1) i=1 (my)
NR NSDOF NSDOF N 2DOF

XS S ST S

i=1 (mRi) i=1 (m ) i=1 (m:gl) i=1 (mOGi)
N 2DOF N 2DOF >T

/ / Sl
Z E g~ Rg dm , (4-16)

each pertinent to a particular part of the vehicle and sharing with that part an
intimate connection with one or more system coordinates. Equation (4-16), wherein

the notation is self-explanatory, is complemented by the following definitions:

m, = mass of the rigid central carrier

me = mass of liquid propellant (in the tanks and feedlines) plus the products
of combustion in all the engines forward of their respective nozzle exit
planes (the word "forward" as used here is that of the thrust delivered
by an engine).

Mg = mass of the itn swivel engine.

Mp; = mass of the ith "point" mass.

m, = mass of the ith flexible appendage.

th th

Mp; = mass of the i rotor (the i"" rotor may or may not be a reaction wheel).

ml

mass of gimbal of i'f* SDOF CMG.

Gi
m'gi = mass of gyro element of it" SDOF cMG.
th
Mogi = Mass of outer gimbal of i"" 2 DOF CMG.
M;gi = mass of inner gimbal of it 2 DOF CMG.
mgi = mass of gyro element of i" 2 por cma.
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The manipulations leading to the system equations of motion begin with the
expressions for ﬁs and its requisite derivatives in terms of the generalized coordi-
nates and their time derivatives. In general, the position of an arbitrary point of

the vehicle relative to the S-frame (defined in section 2) is given by

(4-17)

the vector T being the position of the point referred to the B-frame (section 2) and
T =T (S+§) = T (S+B) the rotation matrix defined in section 3. Direct differentia-

tion then gives

ﬁs =R_ + T ¢ +T 5 (4-18)
5 2 T 2 T = T T2 =
R,=R_+T [F+20a T+@ v+ )F (4-19)

use having been made of equation (3-3) and the skew symmetric matrix @ defined by
(3-2) with the property (3-4).

To be recalled at this point is a remark made earlier to the effect that the
number of dots above a vector symbol is indicative of the order of the time derivative

of that vector as measured by an observer in the reference frame on whose associated

vector basis the vector is resolved. Thus,

B

. . 2 - -> 3 2 =

3 - [(d = = _[d = = _{d = = _[d ~
Rs“<d—t> Ry Rs:< 2) Rs ’ Rs:<cF> Rs ’ Rs‘( 2) Rg >

S dt S dt
s s
while
2. = 3 2 -
r = <ac_1f>v r ., ‘I\" E(.i_) F
dt® /&

In view of this convention and the property (3-4) of @, it should be evident that the
expression within braces in the right member of equation (4-19) is completely equiva-

lent to the more familiar "textbook like" expression
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2

(i) ¥ (), 7o e (&) 7+ (85 )

all vectors in equation (4-20) having the B-resolution. Thus, with the "derivative

—>

X1 ,

=

'Q
=N
=
=

—

+wB X (wB

D)
o+

S (4-20)

convention" of this report, one can dispense with the cumbersome notation of equation
(4-20) and pass from equation (4-17) to equation (4-18) and from equation (4-18) to
equation (4-19) as if in contempt of (yet in complete accord with) the differential

operator relation

(E_) = (_(_i_> + a; X
dt s dt B B

Clearly, the only system coordinates (and derivatives thereof) in evidence in
equations (4-17), (4-18), and (4-19) are the components of ﬁs and the Euler angles

T and QT

(the Euler angles entering through T which are completely determined once
an Euler sequence has been prescribed). Consequently, it is necessary to comple-
ment those equations by expressions for :r:, %, and % in terms of the other system
coordinates and their time derivatives. Each expression alluded to pertains to a
particular subdivision of the vehicle system, the manner of "subdividing" the system
being dictated by the subscripts in equation (4-16). In what follows, context should
Ei’ "°° mgi' For
cxample, the symbol m, in the paragraph immediately following is an ab

make clear the intended meaning of the "mass symbols" m,, Mg, m

the "rigid central carrier."

At points of m,, one has simply

=N
e

.

=0 (4-21)

the vanishing of T and ¥ being a consequence of the assumed rigidity of m, and the
B

definition of the B-frame as one at rest relative to m,.

Y
At points of the fluid mass mg, the vector T is a function of both position and

time, that is,
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X
r=r(r,t) =|y
3
so that
e (VX)
3 - 2
r=tyl=10vy)
Z (V72)
where
vV o=

Via the relations

of
p —_—

dp
ot

Voo P =f7F

_ 0 }

~ NN

9

U oM M

=Y.

e T P

a0
ot

v, Z, t)
v, Z, 1)
¥y, z, t)
+ aé/at
+ 8§/Bt
+ aé/at

To/3% +70/05 +K 2/0%

- ¥V - (pT) (the continuity equation)

C (D) + (FD - (oD

(4-22)

(4-23)

where f is a scalar function of position (T¥) and time t, and p is density (also a funec-

tion of position and time), one can go further to show that

_ 8 3

<}

<N

L2
- (X p T)

.
» —

- (¥ o T)

'(éog)

(4-24)

an important result (intimately related to thrust) finding its application in the deriva-

tion of the translational and rotational equations.

At points of My
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r=Tp; ~Ap; Agy t Tgy TR (4-25)
:,; _ > T > d — e

r= -Q,Ei AEi + TEi Ppi s (at')El rp; = 0 , (4-26)
2 _ > ) (4-27)
T= fgilp; * Tgy TR

=2 ~
FEi being the position (referred to the B-frame) of the swivel point, the positive

scalar SLEi the distance between the swivel point and the engine CM; the unit vector

XEi (having the B-resolution) directed as the thrust FEi; ?Ei the position of a generic

point of the engine referred to x i YEi ZRi (defined in section 2); and TEi the rota-

E
tion matrix whose definition appears among those in section 3.

Pertinent to the point mass mpi’ one has

= -

By

= rpi + gpi Api (4-28)
= _ - o
r F’pi _/\.pi (4-29)
r = Epi Api (4-30)

>

;pi being the equilibrium position of mpi and gpi its displacement in the direction of
the unl’i vector Api if gpi > 0 and in the directlon of _Api if gpi < 0. The unit
vector Api has a constant direction in the B-frame. (If the mass mpi is a part of the

mechanical analog of a consumable liquid, liquid propellant for example, then as the

liquid is depleted, the vector ?'pi will vary which is to say that its time derivatives
—>

will not vanish. However, even in such a case the approximations Fpi Y (—): ¥pi v 0
will be made herein.)
For dm ¢ m,, that is, at points of flexible appendage i,
F=r+ T B+ F & DI (4-31)
i i i i,
:.,’ _ ".'T — - ~T > > _
r = Ti [ri + A (ri, t)] + Ti A(ri, t) (4-32)

31



TT [ + (., )] + 2TL % @, b+ T

i ; i i A (rs, t) (4-33)

In equation (4-31) ’%i denotes the position of the point of attachment of flexible append-
age i; the matrix Ti is as defined in section 3; ?i denotes position relative to the
i-frame (section 2) when the appendage is in its undeformed state; and A (?i, t) is
the displacement, due to deformation of the appendage, experienced by the point

whose position (referred to the i—fI:ame) before deformation was Fi. The generalized
bending displacement coordinates n}, i=1, ... Ni’ are to be so determined that

A (?i,t) is given by

N1
Z n;;; (i) _ s (D —»(1) ’ (4-34)
=1

the 3 x N modal matrix <1>( D having for its j th column the 3 x 1 column 6(1) whose

elements are functions of ri and the N X 1 column n( D having n] as its ]th element.

Denoting the position (referred to the B-frame) of the CM of rotor i by ?Ri and

position referred to the (Ri)tframe (section 2) by #! i the position (relative to the

B-frame) of a differential element of mass belonging to Mp, must be given by

2 =2 7T = -
r—rRi+T R1 (4-35)

from which

;;_"'T - 2_ _
r = erR , r=T5.r. | (4-36)

it being presumed that ?Ri is a constant vector on the B basis and that the rotor is
rigid so that (d/dt)(Ri)' FRi' = 0. The "rotors" of this paper may or may not

include reaction wheels but do not include the rotating elements of a CMG.

The position of a differential mass dm e mG , referred to the B-frame, is

z =2 T
r

= Ty + TGi rGi (4-37)
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where T . is the position of the CM of mis ?Gi denotes position relative to the

Gi
Gi-frame (section 2), and TGi the rotation matrix whose definition (section 3) is
found among those pertinent to the i'" SDOF CMG. With ?Gi regarded as a constant
vector (in the ﬁ—frame) and m'Gi regarded rigid, there follows
2 _ ,i,T - :_;’ o T —
T=Tgi tgi + *=Tgi Tai (4-38)

Similarly, for dm € m'

gi
=2 == T -
r = rgi + Tgi rgi (4-39)
'_3 . T — % i T —
r =T . , r=T . r. |, (4-40)
g1 g1 g1 g1

—

?gi being the position of the CM of m;gi (also assumed rigid); ng the position referred
to the gi-frame (section 2); and Tgi as defined in section 3. (The assumption that

N
m'Gli and m'gi have a common CM implies, of course, that ¥ i = Tai It is assumed

further that the gimbal axis passes through the CM.)

In the definitions and consequent relations pertaining to a two DOF CMG
(Sections 2 and 3) the additional subscript i (suggestive of the ith two DOF CMG)
was omitted on all symbols incident thereto not only for "convenience" but deemed
unnecessary by the author in view of the self-evident fact that the orientation of the
associated coordinate systems and the structure of the relevant transformation matrices
change from CMG to CMG. In keeping with the aforementioned definitions and rela-
tions, the subscript i will be suppressed on all symbols in this paragraph, it being
understood that they apply to a two DOF CMG. Thus, under the assumption that the

—>

outer gimbal, inner gimbal, and gyro element of the two DOF CMG in question are

rigid with a common CM located at FOG =Tig T ;g relative to the B-frame, there
follows:
2 2 T
' =Toc * ToG "oG
dm em . »{r=TL % (4-41)
0G BOG 0OG
r = TgoaG Yoa
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i
N
=
y

'_";__ T — _
dm ¢ mIG >{r= TBIG rIG (4-42)
Y S
r=Tgig TIg
=2 =2 T >
r=r + T
g Bg g
dm em - {r=1% ¢ (4-43)
g Bg 'g
5 >~T -
r="T r
Bg g

where FE denotes position relative to the ¢-frame, £ = 0G, IG, g, and TBg = (TB~¢)
denotes the rotation matrix defining the transformation from the B (or ﬁ) resolution

to the ¢-resolution, ¢ = 0G, IG, g.

Turning to the development of the equations of motion, attention will first be
focused on the vector equivalent of the three scalar equations corresponding to the
components )N(S, SNZS, and Zs of ﬁs' By mere inspection of equations (4-1), (4-17),
(4-19), and the expressions for U, D, and Qq (q = Xs’ Ys’ ZS), it should be obvious

that the vector translational equation, before further simplification, reads as follows:

13 . . 2
=~ T = T = - T T 2 _ 3z
/{RS+T [F+20 F+ (@ +0° ) Fl}dm=Fopayipy.s
(m) -
o 5 (MOON) 0L R (8UN) (4-44)
‘m s - s s + F + F
& _(MOON) 3 & _(SUN) 3 AERO, S ~ "SOLAR, S ’
S S

a result that one might have expected without resorting to equation (4-1). An imme-

diate simplification of equation (4-44) is

2

2 T T =2 3 T = = > (SUN)
mTRS—m(Q + Q )PCM /(I‘+ZQ r)dm+FgB+FgB
(m)
= (MOON) . = = )
* Fop * Faero * FsoLar - (4-45)
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All vectors in the right member of equation (4-45) have the B (and also the B) reso-

(MOON) and F (SUN)
gB

are given by equations (4-1F) and (4-1G), respectively. Integral expressions for

(=Y

lution. The vector FgB is defined in appendix A, while FgB

> . 3 - 3
FAERO and FSOLAR are given in appendices B and C, respectively. The vector

—> ~

?cm’ the position of the CM of the entire system relative to the B-frame, is defined
in appendix D. Via the relations (4-21) through (4-43), one can argue that the
integrand of the integral in (4-45) vanishes except at points of me, Mg, (i=1,

NSE), m, (i=1, ... NA), and at the point masses mpi (i=1, ... NP).

Integrating both members of equation (4-24) over Vf, the volume occupied by

me, and applying the divergence theorem gives

/pfdv /;dm: /;—t(p?)dv—/?(pF-Hf)dA, (4-46)

V) (mg) (V) (Ap

where Af is the area of the surface bounding Vf and ﬁf is a unit vector normal to
Af (directed inward) at a generic point of Af. The integrand of the surface integral
in equation (4-46) vanishes at all points of Af except on AE (the sum of the exit

areas of all engines, both swiveled and fixed, associated with mg). Thus,

_ f(??+2QT¥)dm:-zQT f?dm- f%—(p%)dv

(mf) (mf) (Vf)
+ ]?(p?-?l)dA , (4-47)
(Ap)

the symbol n denoting the unit normal vector (directed inward) at a generic point of
AE' The surface integral in equation (4-47) will be recognized as the "momentum"

N
component of the thrust associated with M. The thrust, FT’ is defined by

ET:ff(p’f)-Z)dA+ _/(P-Po)r_;dA , (4-48)
(Ap) (Ap)

the symbols P and Po in equation (4-48) denoting, respectively, local static pressure

and free stream static pressure. On dropping the rightmost surface integral (the
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"pressure" component of P?T) in equation (4-48) as negligible and discarding also the
first two terms in the right member of equation (4-47), the first being the Coriolis
force and the second representing the unsteadiness of the fluid flow, one has the

approximation

- / (t+ 20T 7 dm a Fp - (4-49)

(mf)

Manipulations (omitted here) will show that

- / G+20Y ) dm = Mg Lp: (Npy + 2 oT XEi) . i=1, ... NSE, (4-50)
(mEi)
- /(F+2QTF)dm=—mPi(%,'P1 P1+2gP1TAPi),1=1, NP ,
(mPi) (4-51)
- /(§+2QT'§‘) dm = - m, T {Tx [z(o)wy(i) MR 6,
(mi)
+ ii X [;i X (E’i(o) + \y(l) n(l))] éiz
FTox @ 30y 4y
~om of TT {T x [2; 2O, D Dy
1 1 1
sy 7@y ¢ D o Na.
(4-52) .

In arriving at equation (4-52), use was made of equations (3-6), (3-7), and (3-8).
The symbol % 2.0 denotes the position, relative to x. ylz1 (the i-frame defined in
section 2), of the CM of appendage i when n(l) = 0, that is, when the appendage i

th

is in its undeformed state. The 3 x Ni matrix ‘P( D has for its j column the 3 x 1

column matrix
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@;.‘i) =(1/m,) /Jj(i) dm , j=1, ... N., (4-52.1)

which is to say, obviously, that

v @ = (1/m)) f@(i) dm . (4-52.2)
(m;)

In view of equations (4-49) through (4-52), the translational equation (4-45)
can be made to assume the form

2

5 . T T, = > 2 (SUN) , =(MOON) g
mTRS—m(Q‘+Q )rcm+FgB+Fg‘B +FgB +FT+FAERO
NSE .

-> - T -
Fsorar * Z Mp; gy (Agg + 207 Apd)
i=1
NP
—Zm (oo Do + 2 6. 0% A0
Pi ‘5pi “pi Pi Pi
i=1

NA
-Z m, ’fiT {1 x [4 PR () n(l)] é. +Yi x [\P(l) _r'?(l)] é.
i=1

+¥i X [1 X (Jl, (o) , ‘P(l) 9(1))] 9 }

NA
-ZQTZmif {1X[SL(O) y D (1)]é+‘1’() (1)}
i-1
NA -
- Z m, "]?’iT y D 20 (4-53)
=1

Note the absence of time derivatives of ;cm in equation (4-53). Therein lies the

reason for choosing the components of R_ as three of the system coordinates instead

5 CM

of the components of the position vector, RS , of the CM of the entire system

37



referred to the S-frame. Should one want the differential equation satisfied by

ﬁSCM, he has only to make the substitution ﬁs = ﬁ)SCM - TT ch in equation (4-53).

Definite expressions for A_. and its time derivatives in terms of Bpir Byi and

Ei
their time derivatives cannot be written until one specifies the actuator arrangement,

the sign convention for and Byi and the direction of the thrust F i when Bpj and

By

Pi E
BYi are zero. If the use of swiveled engines proves to be impractical, as is likely to
be the case, then, clearly, the terms reflecting their effect can be deleted without

destroying the validity of the equations in which they appear.

The effect of the rotors will not become apparent until the vector rotational
equation has been written, this problem being addressed in the next and several

succeeding paragraphs.

The "customary" starting point in the approach to the moment equation is the
generalized principle* of angular momentum (sometimes also called the generalized
angular momentum equation) or special case thereof. Writing the moment equation via
equation (4-1), as will be done in this report, requires no prior knowledge of the
aforementioned principle; however, the use of equation (4-1) will require a few more
manipulations, the extra preliminary manipulations serving in fact to establish a
relation from which it is possible to deduce the principle of angular momentum (see
Reference 8, pp. 20-21 of Chapter 2, paying particular attention to equations 14, 17,
and 18).

Supposing the moment reference point** (MRP) to be the CM of the entire
system, one should write (with r denoting position relative to the B-frame defined in

section 2)

_ oCM T >
r

*See References 8 and 14 (among others),

**The well known special case of the generalized angular momentum equation would
apply here, that being the case wherein the linear moment relative to the MRP
vanishes identically.
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Clearly, the manipulations can proceed no further until the matrix T is definitely
specified by a prescribed Euler sequence. Fortunately, as extensive (yet simple)
manipulations of the author have shown, the form (4-57) of the moment equation is the
same no matter which of the 3! = 6 distinct Euler sequences below is selected to define
the matrix T (see equations (3-0.1), (3-0.2), (3-0.3)).

[¢ ](3) [¥ ](2) [‘P](l) (a 1,2,3 sequence through ¢, \Pp, and &Py)

WP](z) [¥ ](3) [¢ ](1) (a 1,3,2 sequence through P \Py, and \Pp)

[\Py](3) [‘Pr](l) [\Pp](z) (a 2,1,3 sequence through \Pp, ¢_, and upy)

r

T =
[y ](1) [v ](3) [+ ](2) (a 2,3,1 sequence through O oy and ¥,)
b ](1) [ ](2) [¢y](3) (a 3,2,1 sequence through upy, 95 and ¢.)
[*PP](z) wr](l) [¢y](3) (a 3,1,2 sequence through by P and @p)

Selecting the 2, 3, 1 sequence (merely for the sake of being definite) so that

i I I
s s
] =T JS W](l) [¥ ](3) [¥ ](2) JS s
K K K
s S
it can be shown with little effort that
3R
8-53— O L
p
-1. 0 O
N 0 -1. 0
3K .
= - 0 0
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[¢yl(3) [\Pp](z)

Further scratchwork (not repeated here) has shown that summing corresponding mem-

bers of the three equations whose forms are those assumed by equation (4-1) when

q=v

v, and apr, followed by some rearrangement, gives

p’ 7y
T
= > - > - =~ (EARTH)
] -
i+ (KS )B + (JS)B fr x T R dm /r x T (d FGRAVITY,s)
(m) (m)
_ = = (SUN) /'» = (MOON)
fr x T (d FGRAVITY,s rxT (d FGRAVITY,s)
(m) (m)
- fr x T (d FAERO,s) rx T (d FSOLAR,s) =0, (4-54)
(A) (A)
In equation (4-54), the subscript B indicates the B-resolution, that is,
0
(JS)B = B-RESOLUTION OF JS =T JS =T 1.
0
0
K ! = < L— = - K !
(Ks )B [\Pr](l) [¢y](3) KS [apr](l) [\Py](s) 0 B-RESOLUTION OF Ks
1.
where
IS' IS
. _ —>
Is'| = Ml | s
K ! K
s s
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Recalling the definition of T = T (S+B), it should be obvious that

=
”
job
!
!

> ~> (EARTH) _ > =1 s - -
fr x T d(FGRAVITY,S) = f =My [see (A-28) and (A-29)]
(m) (m)
TORQUE DUE TO EARTH'S
GRAVITY FIELD

> > (SUN) _ w(SUN) _ ' \
fr x T d(FGRAVITY,S> = MgB = TORQUE DUE TO SUN'S GRAVITY FIELD
(m)

- ~ (MOON) ) _ >(MOON) _ '
fr x T d(FGRAVITY,S = MgB = TORQUE DUE TO MOON'S GRAVITY FIELD
(m)

- -

rx T (d FAERO,S) = MAERO = AERODYNAMIC TORQUE (APPENDIX B)

(A)

fr x T (d FSOLAR,S) = MSOLAR = SOLAR RADIATION TORQUE (APPENDIX C)
(A)

Treating both Sun and Moon as point masses results in the following approximations

to N/ig](B»SUN) and Mg%MOON)’ these being found by developments similar to that of
equation (A-T7).
3 u
v (SUN) s - i
M8 M o8 Usun ¥ (DuSUN) (4-55)
SUN
i (MOON) Suy S s
gB N3 Uvioon ¥ (UYyo0N? (4-56)
Ryioon

In equation (4-55)

R =R

SCM ﬁ*éSUN)) > R

sun = [Rgun! > BRsun = T (Rg > UgpuN

SUN""SUN ~

while in equation (4-56)
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—

>CM _ ﬁ’;MOON)) > _ = /R

Ryoon = IBymoon! » Emoon = T (Rg > UyooN = Emoon/Emoon
The symbol ” denotes the inertia matrix of the entire system (in its instantaneous
deformed configuration) referred to the B-frame which has origin at the instantaneous
CM of the entire system. It follows from equations (4-54), (4-55), and (4-56) that

SUN) , 5 (MOON) _ & M . (4-57)

- =
¥ x TRy dn = Mg + M g oB AERO * VSOLAR

gB
(m)

A strong advocate of the direct use of either the principle of angular momentum or
equation (4-57) might insist that equation (4-57) be invoked at the outset in complete
disregard of the manipulations leading to it. The author of this report would then
hasten to point out that some of the readers of this report are likely to be the
uninitiated who will find it instructive to base the development of the equations of

motion upon the principle of virtual work.

Alternatives to equation (4-1) in the approach to the moment equation are the
relations (4-58) and (4-59), both of which are established in Reference 1 (see also

Reference 15 on quasi-coordinates).

Ew (KE) dm + (TﬁgM) x /? dm = M’EXT , (4-58)
(m) (m)
—> o~ d o~ — )
fLw (KE) dm + V x fvv (KE) dm = Mgy - (4-59)
(m) (m)

The operators Ew and v, are defined by

ng _ (d - _ {a T
Lw()_<<F>va()+“’vam()_(H"c)va()+Q vw()
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R
—

lo,

<

@

<
Do

-

w

- “(B)
where

and

>CM

7 = — 3 g —)_.
velv = Vi+ Vg + Vyk = TR

In both equation (4-58) and (4-59), the symbol KE denotes the kinetic energy per

unit mass. However, in equation (4-58), it is necessary to write
C . : T (. .
KE = (1/2) R} R_ = 1/2 {REM +18 (r 0T H QRSM + T8 ¢+l D
while in equation (4-59), one must write
T .
Ki=(1/2){§+F+QTr} V+r+QTr .

The vector MEXT is the B-resolution of the resultant external moment about the
system CM, and if comprised of the moments of only those external forces accounted

for in this paper, it is identically the right member of equation (4-57). Complete

43



equivalence of the left members of equations (4-57), (4-58), and (4-59) is also estab-
lished in Reference 1.

-

Equation (4-57) with its right member replaced by MEXT

(17) of Chapter 3 in Reference 8 wherein the symbol a denotes the acceleration dis-

is the same as equation

tribution instead of Tﬁs.
On writing

> > 5 L
TR =TR§M+r+2§2T T 7

. £+ T + g

and recognizing the relations

f £ dm = 0 (by definition of the CM)
(m)

(m)
L, 72 . . T[]z
fer rdm—waDwB=Q vy
(m)
{rx ol 7+ 7x Tl 7} dm=Dof]§
(m)
2 FxQTf’dm:DJB+JBx [?xf’dm=DJ§B+QT f(?x;)dm ,
(m) (m) (m)
use being made of the vector identities a x [B X (t_;x 3)] = -b x [gx (a x 8)] and

&x (b x @ = (d-¢)b - (-b)C in establishing the third and fifth, one can show that

equation (4-57) may be put in the form

2 M= .. T[]~ L3 S 3 -
DwB+DwB+Q DwB+ frxrdm+QT rxrdm=Mpen . (4-60)
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Before dealing with the two integrals in equation (4-60) in detail, their integrands
will be transformed via the substitution T = % - ¥C[W' Thus, the moment equation will

be rewritten, temporarily, as

3 7. T M~ z =2 2 T (.2
D“’B +DwB + Q DwB+ f(r— rCM)xrdm+s‘z ﬁr— rCM)
(m)

-
i

dm = (4-61)

MexT -
where, obviously, the condition ff" dm = (_))has been imposed.
(m)

To express the two integrals in equation (4-61) in terms of the system coordi-
nates and known system parameters, the system will be subdivided in the manner
indicated by the subscripts on the integral signs in equation (4-16) and substitutions
made from equations (4-21) through (4-43). Manipulations leading to the results that

follow will not be repeated here.

It obviously follows from equation (4-21) that

f(?-?CM)x¥dm+gT f(%’—?CM)x%’dmzﬁ’. (4-62)
(m_) (mo)

O

On substituting from equations (4-22) through (4-24) and again drawing from

References 1 and 8, the author has arrived at the approximation

/‘?x /Fx?(p%’-ﬁ)dAm-MT , (4-63)
2 (AD)

=
o))
3
&
)

(m

the symbol M denoting the moment of the thrust about the system CM and defined by

T

M, = /?x¥(p¥-ﬁ)dA+ fo(p-po)HdA : (4-64)
(A (AD)
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The approximations (4-63) are consequences of the complete neglect of the volume

integral f? X 5% (p %) dV and the rightmost surface integral in equation (4-64),

vV

the volume integral being encountered in the manipulations pertinent to f? x ¥ dm.

Also made in this report is the approximation (mf)
T - : —
2 frxrdmfyO : (4-65)
(my)

In each of the vector products appearing in equations (4-63) through (4-65), the

factor on the left has been written r instead of its equivalent F - % to better

CM
emphasize the fact that the moment is about the system CM,

By referring to equations (4-25) through (4-27) and to the definitions and
relations of sections 2 and 3 pertaining to swivel engine i, one can show (as in
Reference 1) that

22 3 T =~ 2 . - -
[ (r rCM) X Fdm + Q f (r rCM) X ¥ dm = mps lEi dgj X AEi
(mp;) (mg;)
_ - - T Ei S e
Mgi fpy g X (dgg X Agy) * Tgy I Tgy wgj * (v * o)
T (Ei - o ]
X TEi I TEi wpl 1= 1, ... NSE , (4-66)

where

- —
~

4

X
=

9gi  TEi T Tcm T~ YEi MEi

A relation similar to equation (4-66) holds for the ith

rotor, as consideration
of equation (4-35), equation (4-36) and the definitions and relations of sections 2 and

3 concerning rotor i will show that (Reference 1 again)

= =2 3 _ . R1 >,
f (F - Tgy) x T dm + gt f & M) x ¥ dm = Tri ' TRi “ri
(mgy) MR N T Ri .

+ (Q)B ') X T TR] UJRi N
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From the content of the paragraph containing equations (4-28) through (4-30),

there follows

= = ::..) T =2 = Z.f _ =
f (r - rCM) xrdm+ Q f (r - rCM) X r dm = mp. {(rPi - rCM)
(mp) (mp)

X (Epj Apy) + up X [(Fp; - Tep) X (Epg AppPl} . i=1, ... NP .
(4-68)

Substituting from equations (4-31) through (4-34) and manipulating in accord-

ance with the relevant definitions and relations of sections 2 and 3 leads to

f(r - CM) X T dm + ol ('1?— I;')Cm) x T dm =fiT i %iﬁ' + (“—;B +5i')
(m,) (m,)
x TL BT, 5 +my () - Ty x T1 LT + ) (2,0 + ¢ @ [0,
+ 2 5’11‘ ‘P(i) ﬁ(i) + ‘P(i) ;])(i)] + JB X {mi (;i - %CM)
x T 107 (20 + ¢ @ Ty 4y @
Ni Ni
. . . . ~(1) , (D
~ . > - . . %
DN I R U S T
=1 (m,) K=1 (m,)
1 1
N
+2ﬁ§ frlx(w x«p(l))dm+2nan f_)(l)x(wX*P(l))dm
(m,) K=1 (m,)

N;
> ~T i > = (i) Z f w (i)
+wa{Tian frlxso dm+n gk X dm| (,
=1 (mi

K=1 (ml)

i=1, ... NA | (4-69)
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and the symbol I' denotes the inertia matrix of flexible appendage i, in its instan-

taneous deformed state, referred to the axes XVi%; defined in section 2.

For convenience in writing the moment equation below, the integrals in equation

(4-69) will be expressed more compactly by introducing the symbols 6:)]., G}K’J;j’

and J;K defined by

—él. = f ;i x'&%(l) dm

o]
(my)

G- [ 503D an
(m,)

i - —>()
v = fﬁ(ri) S‘(*"j Dy dm

(mi)

]?K - ff(*gj(i))f(gK‘i)) dm

(mi)

where the operator : is such that when applied to the vector A = [Al’ AZ’ A

the result is the skew symmetric matrix

0 -A3 A2
J(A) = A3 0 _Al
-AZ Al 0
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(4-69.1)

(4-69.2)

K=1, ... Ni)

(4-69.3)

(4-69.4)

T
3] b

(4-69.5)




The integrals in equations (4-69.1) through (4-69.4) also appear among the time
independent integrals of Appendix F which arise in deriving the bending equations.
Definitions (4-69.3) and (4-69.4) permit one to write

f 7 x (3, x 3].(1)) am = - 1§, f s D x @ x 0 D) am = -J]
(m,) ]

h

The contribution of the i SDOF CMG to the two integrals in equation (4-61)

is, in view of equations (4-37) through (4-40) and (3-9) through (3-25),

2 2 2 T f 2 = 3
f (r rCM)xrdm+Q (r rCM)xrdm
t ] 1
(mGi +mgi ) (mGi +mgi )
— Gi gl >y - - gl . > >
Uyx ¥ 1 g * 0 X 0"l + 1) [ug + ug) x ']
(4-70)

The right member of equation (4-70) is a simplification of the expression (4-71),

T .Gi T .gi 3 e L=, T _Gi T gi L
(TGi I TGi + Tgi )| Tgi) ®Gi + (u)B + wGi) X (TGi I TGi + Tgi 1 Tgi) Y&
I T gl oy 4 9 Ty T gl ™ -
+ (WB u ng) X Tg1 I Tgi wgl T 4 wgl X Tgl i lg‘l wGi
gi > > -
+ [Tr (I®9)] (wGl X wgi) ’ (4-71)

the first three terms of which one might have anticipated after inspection of equation

(4-67) and certain terms of (4-66) and (4-69). By Tr (Igl) is meant the trace of

gi . gi, _ (gi gi gi
I=°, that is, Tr(I®") = Ixx + Iyy + Izz .

In this paragraph, as in that segment of section 3 pertaining to a 2 DOF CMG
and in that paragraph of section 4 containing equations (4-41) through (4-43), an
additional subscript i (or superscript i as the case may be) will not be attached to
any symbol relating to a 2 DOF CMG. Manipulating in accordance with the definitions
and relations of the aforementioned segments of this paper leads to the contribution
of a 2 DOF CMG to the two integrals in equation (4-61), that being
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f (F—?CM)x'fdm+QT / (?—?CM)dem

(Mo tmygtm,) (Mog*mgTMg)

OG+IG+g = OG+HIG+g -»

= Ig vog' + (wg tuggh) x I YOG

I G+g

B (JIG' +

' —> - >
+1 16 ¥ vog" * (vg * ugh

IG+g -

> 1G+g >
' 1 1
B wIG+2w x 1

x 1 i *1p “0G

- ->
1

. IG+g = g ~ g
[Tr (1 )] (wIG' X wOG') + (wB + wg') X IB wg

R g > >
+2wg XIB (wOG +wIG)

-

[Tr (18)] [Jg' x (ay

G' + wIG')] . (4-72)

The factors Tr(IE), £ =1G + g, g, in equation (4-72) could be replaced by Tr(Ié),
g =1G + g, g, since the trace is invariant under a similarity transformation. See

equations (3-28.1).

On assembling the several contributions to the integrals in equation (4-61), as
given by equations (4-62), (4-63), (4-66), (4-67), (4-68), (4-69), (4-70), and (4-72),

one can recast the moment equation in the somewhat more familiar form

+ jj(MOON) | = (SUN) , +
gB gB

IEN +D‘“B *og X DwB =Mp + Mg AErRO ' Msorar

NSE .
— 35 — d g

* 2, mg; by gy x kg * ug X (Ag; X Mg}

i=1

NSE
) T Ei S e T Ei >

2 Tgi IT Ty ogy *+ (wg + wpy') x Tpy I Tgy wpy')

i=1

(4-73)

(continued on next page)
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_ T R1 S - —>, T ,Ri ~>
Z{T Ri Opi * (0g * up) X Tp: I To. o

NA

-2 O T syt x BT D T; o')
i=1
NA

- =2 ~T (&T > (0) (D “’(1)
Z {my (r; - Ty x Ty [cay + ) (2777 + ¥ )
i=1

-2 2_—) ~T (T > (0) (1) (1)
wg X Z {mi (ri cw) X T [Qi (JLi + Y )

(4-73)
(continued on next page)
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NSDOF
_ Gi g]. —;' —> —>y gi - —y
E {( IXX + Ixx) (wGi + g X wGi) + IZZ (u)B + wGi)

=1
>y
X wgi}
N 2DOF
_ OG+IG+g —-), - —>y OG+IG+g‘ —>,
Z {Ig vog * (vg T upg) ¥ I “0G
=1
I G+g —; -> —>' -> ~>
g7 g * uig X 9og) * (B * Uig)
IGt+g - -, IG+g -,
X IB wIG + 2 wIG X IB wOG

1

(7 11678y (Tg X uhg) + (g + J:q)

x 1§ J‘g+2$’gxl§ (Bhg + 81g)
- e AB)) (6] x (g + upgdll . (4T)
@) (conc.)
T [Ei 2 T | Ri

One expecting to see terms such as TE1 TEi wg s —TRi I TRi wR
- T .Ei T _Ri

“ug X TEi I TEi wB’ “ug X TR I TRi wg s etc., in the right member of equation
(4-73) should not be alarmed since their negatives are embedded in the left member
of equation (4-73). Recall that Dis the inertia matrix of the entire system referred

to the B-frame defined in Section 2. An expression for Dis given in Appendix E.

ete., and

. The primed vectors assoc1ated w1th the CMG's in equation (4-73) have the
B-resolution as do the vectors wE R le, and w' (see Section 3). Their introduction
made it possible to write the moment equation more compactly, not to mention impart-
ing a certain "consistency of appearance" in the presence of the other primed vectors.
The explicit dependence of the CMG terms upon the gimbal angles and their time

derivatives and the gyro element spin rates is shown by the following:

1' 1.
Gi , rgiy 3 . > _ =y _ Gi, giife T . - T
(Ixx + IX (wGi + wp X wGi) = (Ixx + Ixx) GGi TGio 0+ aGi wg X TGio 0 ,
0 0
(4-73.1)
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0
gi - - >y L gi : T > T s
Tz (wp +ugy) X wgg = 1y Vg {GGi Tgio |5 Sgi| ~ B X | Tgio |5 Sy ;
sin 6Gi cos GGi
(4-73.2)
g g . .
(IZZ Iyy) sin SOG sin 51(} coSs 6IG
OG+IG+g -, _ » T g _ 8 ; -
IB oG = GOG TBGB .(Iyy Izz) cos 6OG sin GIG cos GIG , (4-73.3)
oG I1G g . 2 g 2
Izz + Izz + Iyy sin GIG + IZz cos 6IG
g‘ _ g' . .
(IZz Iyy) sin GOG sin (SIG cos SIG
- S OG+IG+g » _ - : T g _ |8 i
(mB + mbG) X IB w'OG = wg X {6OG TBGB (Iyy Izz) cos GOG sin GIG cos GIG
0G ., IG, g .2 g 2
I, + 1L+ Iyy sin® 8~ + I cos ‘51(}"
g _ 18 ;
(IZZ Iyy) cos (SOG sin GIG cos 6IG
+ <§2 TT (Ig - 18 ) sin § sin § cos §
OG "BGB YA/ NAY OG IG IG ’
0
(4-73.4)
Ccos 6OG
1 G+g [ 5 =, = _ IG g\ ¥ T . B
Ig7 ° (wig * wig X wog) = Ugx * Iiy) %16 TRaB 5™ %0c (4-73.5)
0
cos GOG
- X I1G+g > _ G g\ & > T . -
(wB + wiG) X IB Ol = (IXX + IXX) 61G wg X TBGB sin GOG (4-73.6)
0
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s 1G g
sin dOG [Ixx + Iyy cos (26I

G)
+ 218 sin? s
ZZ

- 1 G+o —>' IG+ — - . . T I1G g
(Zojg x Ip" % wpg - [RATTH] (g x wpe)t = $og S1g Tpap | Coa Uk * lyy 08 (24
+ 218 sin® 516]
g _ 8 ;
(Iyy I7,) sin (26,5) |
(4-73.7)
-sin ‘SOG cos 61(}
(o +u') x18 ot =18 4 Jo x TX cos &, Cos & (4-73.8)
B g B g yy g )] B BGB OG IG
sin GIG
> g (™ > _ g > e’ )
{ng X IB (“’OG + wIG) [Te(I2)] [wg X (‘”OG + wIG)]}
Ccos 5OG -sin (SIG sin GOG
- g T : . . .
wg Iyy TBGB {GOG cos GIG sin 6OG + (SIG sin GIG cos GOG }
0 -Cos GIG
(4-73.9)

The relations (4-73.1) and (4-73.2) hold under the assumption that IG'1 and I8! are
diagonal and Iilx = I%’;ly, while equations (4-73.3) through (4-73.9) are valid if IOG,

IIG, and 1% are diagonal with IOG = IOG, IIG = IIG, and 18 =18 .
XX vy yy ZZ ZZ XX

In view of equation (4-53), it seems that the selection of the system CM as the
MRP, rather than the origin of the ;&E axes (the ﬁ—frame), in deriving the moment
equation, (4-73), is an inconsistency. A more practical and wiser choice of MRP could

be the origin of the B-frame, a point to be discussed subsequent to writing equation
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Equation (4-73.14) is the form of the moment equation when moments

(4-73.14) below.
The author's derivation of (4-73.14)

are referenced to the origin of the B-frame.
begins by invoking (4-57) which is here rewritten more concisely as

> s _ [/CM
fr x TR dm = M EXT (4-73.10)

N
where the symbol ,,ﬂ%l\)d(,r denotes the resultant moment of the external forces about the

Via the relations

system CM (and has the B resolution).
r=7r- Iy
?CM = (1/m) f r dm (see Appendix D)
(m)
> 2 = T 2 .T T2 =2
TRS=TRS+r+2§2 r+((Q° +Q dr

one may pass from equation (4-73.10) to (4-73.11)

-

. . 2 - .
=2 = T 2 - T T = _ H4CM = = T =2
frx{r+ZQ r+(Q° +Q )r}dm_‘M‘EXT+rCMX f{r+2§2 r
(m) (m)
T, TZ 2
+ (07 +Q° ) r} dm (4-73.11)
With 7 gxT denoting the B resolution of the sum of the external forces, it follows

from equation (4-73.11) and either equation (4-44) or (4-45) that

o

CMxTRS

. : 2 - i
=2 = T = T T 2 3 CM =2 )
frx{r+2§z r+ (Q° +Q )I’}dm—J(EXT+rCMXJ7EXT m

]

(m)
(4-73.12)

But

~ e~

77 CM N _ _ .
‘/}[ ExT T Tcm ¥ 7EXT —"%EXT = sum of external moments about origin of xyz

- =2
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~ e~~~

fF x 4T F dm = DJB , (D= inertia matrix of entire system referred to
m) Xyz)

2 foQTde=DEB+QT [;x;dm
(m) (m)

so that equation (4-73.12) may be written

4

N_l ~—> T~—> = P _ =2 % T = :.;
DwB+DwB+Q DwB+mS(rCM)TRS—JZEXT- frxrdm—Q frxrdm.
(m) (m)
(4-73.13)

Dealing with the integrals in the right member of equation (4-73.13) in the manner of
arriving at equations (4-62) through (4-69) and (4-70) through (4-72), there follows

~ -

~

~ < T G > s =
D‘“B * D‘*’B t o D‘*’B +m 8@y T Ry =hopyq + oy
+ {other terms attributed to the integrals in (4-73.13)} . (4-73.14)

The vectorJ/tT is the resultant engine thrust moment about the origin of the B-frame,
while the terms alluded to within braces include all the sums appearing in the right

member of equation (4-73) modified, where necessary, by suppressing the symbol

-

~

Top The vector aEi in the sum pertinent to the swivel engines should be replaced
= _ = _ - - _ = _ = _ >
by i = Tri - Ymi My (recall that dgi = Tri - ToMm T YEi AEi).

If Dis known, .then one can compute D in accordance with the relation

=0+mn Sy SCroypy - (4-73.15)

However, the author does not recommend the use of equation (4-73.15) even if equa-

tion (4-73.14) is chosen to be the moment equation. With little effort, equation (E-4)
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o~
of Appendix E can be transformed into one for determining D directly. Such a
transformation* is effected by merely replacing the symbol If with ff, the symbol Tf
denoting the inertia matrix of the fluid referred to the g—frame, and replacing each
symbol EE by the symbol ag where ag is defined by

—> - -2

ag = dg treym 0 6 S 0, i, Ei, Ri, Pi, Gi, gi, OG, 1G, g , (4-73.16)
the q (g 0, i, Ei, Ri, Pi, Gi, gi, OG IG, g) being exactly as defined in appendix E.
From the definitions of the qg and the qg, it should be obvious that the expressions
for the qg)_ are devoid of dependence upon rCM’ and hence, that the resulting expres-
sion forD will be neither explicitly nor implicitly dependent upon FCM' A differentia-
tion with respect to time would then yield an expression for ijhicll is free of both
Tom and IN'CM' Computation wise, the use of such expressions for D and D would be
far more expedient than the direct application of equations (E-4) and (E-5) followed
by an application of equation (4-73.15) to find Dand D In fact, computation ofD

nd Dwould proceed more efficiently by first computing D and D and then D andD
from

D=D- m 8@y $¢i5p

-

From a programming standpoint, it should be evident that the choice of the

e

- m SEgy) STy m S SCTgy) - m SEgyp SCTgy

origin of the B-frame as MRP offers certain computational advantages. In that regard,
still another point favoring that choice should be made. Consider recasting the

system equations of motion in the form

AX = F (t, X, X)

as a first step in rendering them amenable to some numerical integration scheme. (As
one submatrlx of the partltloned column matrix X the author has in mind the 3x1

column ‘PB = [q;l, xpz, 1113] whose elements are the second time derivatives of the

*The reader should realize that here the author is not changing the appearance of
(E-4) via the substitution of qg - rC for qg, ¢ =20, i, Ei, ..., g. If such a

~
substitution were made, after replacing If by If

, the resulting right member of (E-4)
would define neltherD nor‘j however, if If is left intact, the substitution would '
result in an expression which still defines D not D It should be clear that the result
of making the "replacements" alluded to above is the same as that obtainable by invoking

the "generalized transfer theorem" expressed by equation (E-3).
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quasi-coordinates ¥ =f wg dt, i = 1, 2, 3, which is to say, obviously, that “?B = (B;B'
o
Also, the author has here supposed that equation (4-74), not (4-76), governs the
motion of the point mass mpi.) With the combination of equations (4-53) and (4-73)
designated as system translational and rotational equations, it will be found that the
mass matrix A is non-symmetric! But, that the matrix A corresponding to the com-
bination of equations (4-53) and (4-73.14) is a symmetric matrix. The time consumed
and storage space required for constructing and inverting the symmetric matrix should
be less than that for the non-symmetric matrix. The author would definitely prefer
equation (4-73.14) to equation (4-73).

Clearly, the moment equation must be accompanied by the equations giving the
Euler angle rates, SéK’ K =P, Y, r, in terms of the components of JB and the ¢K,
K =P, Y, r. The structure of these equations will, of course, depend upon the
"Euler sequence" of rotations selected to pass from the S-orientation to the B-
orienta}tion. For a 2, 3, 1 sequence through the angles ‘pP’ SOY, s respectively,
the WK, K =P, Y, r, are determined by equation (3-0.4) except in those cases where
WY is an odd integral multiple of ©/2, thereby making the matrix in equation (3-0.4)
singular. Attention will not now be diverted to methods for circumventing the

numerical difficulty encountered at such singularities.

With the coordinate F’pi assuming the role of q in equation (4-1), the result of

some manipulation is the equation governing the motion of the point mass m

32

pl
m.. €. + Cun. £, + K - e N 2 + T 'I% - A
pi 5pi * Cpj Ep; * Kpj Ep; - Mp; |wp X Ap;l Epy + mpy Apy (T (Rg - App

+ (0T + @ )?-P.}=o , i=1, ... NP . (4-74)

The only symbol in equation (4-74) not heretofore defined is A i which is given by

T f{’ (SUN) _ R Pi

. T _ N S S
Api T Lopil gy [700il gy Ag Rpps App 859 + Mg & (UM _ g B3
S S
§_(SUM) §_OI00N) _ ¢ pi §_(I00N)
" T (soNy | 3|" ¥M | 1§ (MOON) | 3 pi;3 = (MOON) 3 : (4-79)
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The definition (4-75) must be complemented by those following:

2pi_ epi Pl LT X T 2 >

RS = [XS R YS R ZS 1 RS + T (rpi + ‘Epi Api)
= position vector, referred to the S-frame, of mpi
= |gP!

Rpi [Rs I

_ -1 Pi,pi
a_. = tan (YS /Xs )

bi right ascension of mpi (0 < o . < 21

p1

. -1 pi _ . . _
Gpi = sin (ZS /Rpi) = declination of mpi (-7/2 < api < w/2)
Api = api - op - “’z(t_to) = east longitude of mpi (0 < Api < 27)

(If the expression for }‘pi is negative then )‘pi is to be replaced by its positive

equivalent modulo 27.)

A_ (R

. A
g P

—
pi’ api) = Ag evaluated at point with spherical coordinates

(R _., )‘pi’ Gpi) referred to the E-frame (Section 2)

(See equations (A-2) through (A-5) of Appendix A and

that part of Section 3 on the unit vectors u. , U, and u

A $)

It will be observed that in writing equation (4-74), the vector ??pi was regarded as a

constant vector as implied by equation (4-29).

To allow for the possibility that mpi is a "trim" mass installed for attitude con-

trol, one could add to the right member of equation (4-74) the force F_. A the

pi “pi’
scalar function of time Fpi being determined by some control law.

Introducing the symbols wpi and Epi’ satisfying m and 2 m

wz =K
pi “pi T ®pi pi °pi “pi
= Cpi’ and denoting, respectively, the undamped natural frequency and critical
damping ratio associated with mpi, permits one to rewrite equation (4-74) as

29




o : 2 -~ > 2 ST ~
gpi + 2 tpi Ypi gpi + (wpi - le X Ap1| ) gpi + Api {T (R Api)
2 o
+oT & T rgl=0 . i=1, ...NP . (4-76)

Despite the title of this report, the influence of gravity on the motion of swivel
engine i will be accounted for only in part, while that of the aerodynamic force and
solar radiation pressure will be neglected entirely. In approximating the effect of the
gravity field, the strength of the field is assumed constant throughout the region
occupied by mp; and equal to that at its CM. The resulting equation corresponding

to the engine deflection Bpi is, before further simplification

N
3 wl,. . .
Ei T .Fi 3 S, > -, - = T .Ei N N
5 Bpi TEi 1 TEi (wB t dpy t W X wEi) + (wB + wEi) X TEi 1 TEi (wB + wi‘]i)
3 ho 2
) °YEi > 2 d 2 >
Mpi “Ei 36 T (Rg - Agp + 2 (rg; = g Mgy
pi dt
(s)
+ CpEi Bpi + KpEi (Bpi - BPCi) 4 0 , i=1, ... NSE . (4-77)

The companion equation, corresponding to BYi’ can be written immediately by merely
replacing the subscript P in equation (4-77) with the subscript Y. (This is not to
say that the final form of the equation satisfied by By can be obtained from that for
Bpi by replacing the subscript P with Y. It is only at the stage of development
indicated by equation (4-77) that such a change in subscript may be made.) In
writing‘ equation (4;77), the author has made use of the fact that 3§S/3q = Bﬁs/aq
and 9 /TEi/B épi =39 AEi/B Bpi' The equation defining KEi is quite similar to equation

(4-75), that being

= (SUN) _ 3 Ei
A= logd o =600 0 A (Rpis Aoy Spi) + s s
Ei = ‘%Ei'(3) Ei'(2) %g Reir Mg SEp) T Mg T GUN) _ 7 Eil3
S S
I—{’S(SUN) P:’S(MOON) _ g EH 7 (MOON)
- T | M - S - S (4-78)
g_(SUN) |3 m| g MOON) "R EI3 g (MOON)|3
[ S S S I l S
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where

> Ei _  Ei JEi EiT _ZX T = -

Rs = [Xs ’ Ys ’ Zs 1" = Rs +T (rEi gEi AEi)
= position vector, referred to the S-frame, of the CM of mp.
_ 2Fi

REi B lRs l

_ -1 Ei,(Ei, _ _. .
op; = tan (YS /XS ) = right ascension of CM of mp; (0 < oy < 2m)

[ed)
Il

sin—1 (Z]:l/REi) = declination of CM of Mgy (- 7/2 £ §.. < 7/2)

Ei Ei

Agi = %gi " % “’g(t"to) = east longitude* of CM of mg; (0 £ Ay, < 2m)

Ei Ei

-

(REi’ AEi’ aEi) = Ag evaluated at the point with spherical coordinates
(R

Ag

Ei’ >‘Ei’ cSEi) referred to the E-frame.

Obviously, one can proceed no further until the components of KEi = [XEi’ EEi’

UEi]T are given expleitly in terms of Bpi and Byi’ and such expressions cannot be
determined until the engine deflection sign convention, actuator arrangement, etc.,

have been decided. However, it is not difficult to deduce that

“Ei VEi

- 1 ~ 2

1 — - -

Ei~ 7 _ ~ 2 ‘Ei VEi (4-79)

1 - v, .
Ei ’; AT Y
Ei "Ei = MEi “Ei

whatever the structure of the scalar functions defining the direction cosines ’XEi’ ;Ei’

and GEi‘ The symbol -w}:i’ denoting the angular velocity of swivel engine i relative
to the B-frame, was first introduced in Section 3 where the author failed to point out
that the Xgi axis of the Ei-frame (which is fixed relative to swivel engine i) is
directed as the thrust vector and hence as AEi'

*It should be evident that if the expression for A

Ei is negative, it is to be replaced
by its positive equivalent (modulo 27). A similar remark holds for any symbol denot-

ing the longitude of a point.
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The only special case of equation (4-77) to be considered in this paper is that

>
which applies to an engine whose thrust vector, FEi’ makes an acute angle with the

x-axis, whose pitch actuator causes the ;(zN-projection of the thrust vector to rotate

about an axis parallel to the §—axis, and whose yaw actuator causes the ::;-projection

of the thrust vector to rotate about an axis parallel to the z-axis. For such an

-

arrangement, it is easily shown (as in Reference 1) that AEi is given by

where

62

=

=

ot

=k

111

Ei

Il

Ei

Eio

Ei

Ei

>‘Ei 1.

~ 1

HEi - E”— tan By1
vEl -tan Bpi

2~ 2 ~
(1 + tan Byi+tan B

Byi * YyEi * SyEi

B.. + v + ¢

pi pEi pEi

engine cant angle (0 < Ygi < m/2)

. = engine cant in yaw (a known function of Ygi and the polar coordinates

—

of the point of application of FEi’

are referred being the point Pi*]i defined below), - w/2 < YyEi < m/2

-

the line of action of FEi when Byi = Bpi = EyEi = ¢ . =0

the point at which line A intersects the plane y = 0

Eio
(This point need not be a point of the x-axis though such was the

case for the early Saturn vehicles.)

the projection of EEi upon the plane containing the point of application

of FEi and parallel to the yZz-plane.

the pole to which the polar coordinates




YEi engine misalignment in yaw (- n/2 << SyEi << 1/2)
YpEi - engine cant in pitch (also a known function of Ygi and the polar
-
coordinates of the point of application of FEi)’ - /2 < YpEi < 7/2
SoEi engine misalighment in pitch (- ©/2 << ®pEi << w/2)

~

The expressions for EYi and Bpi

tribution of bending, it being assumed there that the carrier vehicle experienced 3D

in Reference 1 included terms representing the con-

bending at the swivel point. In this paper, however, the swivel point, supposed a
point of the central carrier, suffers no displacement due to bending by virtue of the
assumed rigidity of the carrier.

Again, drawing from the author's previous work (Reference 1), one has (bend-

ing or no bending) for this special case

~

o~ 2 w~
wgi (1 - gy )/ gy

dwl..
E ~ 2 ~ 2
— = | (1 - T (- S
OB .
pi
0
= .~ Z\ ']
N VEi (1 uEi)
3.
Ei_ | . ~ o~ 207
T8 | TEi Ei (1 - Wgy ) Ag
~ 2 ~ 20~
- (- ug) (- S g
i ~ 2~ g T
" Vg VEi/Ei
ped]
BwEi I
2 8 | YEi VEi
yi
| 1. i
R - Hgy - Vg
SA..
E ~ 2~
e = | T (- T
yi
- . - 2~
| - Wgi Vg (17 Vg )/ A
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[~ . . . ﬁ N . .
i VEi T YEi VEi , HEi VEi
. 2 Vs Vs
' 1 ~ 2 2 Ei "Ei ~ ~
>y - - ] + — - . .
“Bi T 7o 2| CEiVELCCECE| T[4 22 *Ei “Ei
VEi _ 9 Ei - I
L)‘Ei MEi ~ YEi “Ei LAEi “Ei T YEi MEi
and, with no bending at the swivel point,
N = e T (L= Vdy B+ v (- WDy b
Ei Ei Ei yi Ei Ei pi
o
~ _ i~ 1 o~ 20
UEI—T E1+)\:___(1 vEi)Byi
Ei Ei
. E
~ _ Ei~ 1 o~ 20
Ei Tz E 5 T VR B
Ei Ei
N = = T (L %) B+ Toe (1= Toi?) Bo + e [2 Tos Vs Vo
Ei Ei Ei yi Ei Ei pi yi Ei "Ei "Ei
Mg (1= g )1+ By [ogg (1= Wgg™) - 2 Mgy Vg Vg
N A T -V B - 2V Yes Bl
Ei 3 Ei "Ei Ei yi Ei "Ei “yi
Ei
S = S I s - (L - WD) B+ 2T W ]
Ei~ 2 Ei “Ei Mgi ) Bpi MEi YEi Bpi
Ei
2 2 .
d 2 > 50 T > T T
(Eﬁ (Tg; = Lp; Agy) gy Mgy T 2 4y 0 Mgy T A7) (P - gy
(s)

Now, "if" the angles gpi

vi
when L1+t 8922, £andn being any members of the following list,

~ ~
tan Bpi Ay Bpi’ tan
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and EYi are sufficiently small as to permit the approximations

Ay E’yi’ and further, if such products as £*1n'2 are negligible




“Ei YED YE©® VEP® VEP’ VEP Ppiv Ppiv Ppiv Byiv Byiv Pyiv vyr wor vy
bp> Bp Gy

then considerable manipulation will show that equation (4-77) becomes

(I?fiy + Mg JLEiZ) ('épi t ) + I};iz (éyi +hg) ¥ Ilz‘(ly Wy
* Mgy g [3(]131 (Bpi * YpEi * “pED +;Egi + Fgg by - Xgg Uy
+ Cpg; Bpi + KpEi (Bpi - BpCi) ¥ 0 , i=1, ... NSE |, (4-80)
where
[?(El, ;{?gi, ;Zgif: T (%S - K

Similar approximations made in the equation corresponding to B.,. lead to
PP q 1Y g Yi

Ei 2, = . Ei . Ei

(Izz+mEi JLEi) (Byi+w3)+1xz u)1+Iyz (Bpi+w2)
+mo. oo [XED (g .+ + g )—?E R G + Zoe 0]
Ei “Ei ‘B ‘Pyi * YyEi B Ei “3 7 %Ei “1
+ CyEi Byi + KyEi (Byi - ByCi) a0 R i=1, ... NSE . (4-81)

Since a CMG is a "small" component, it is here supposed that the effect of
gravity on the motion of a CMG gimbal is altogether insignificant. With that in mind

and with q = (SGi in equation (4-1), there follows

.
P

Gi gi. , Gi gi
(Ixx+1x GGi+CGi GGi+(Ixx+Ixx) [1..0, 0] TGio “B
+ 1., 0, 0] {(Tg B) X TG a1 ) Tai Taio op) (4-82)
g1 = 1 =
+ 15, wgy [0, cos Sy, sin 8] Ty ug =My , i=1, ... NSDOF ,

Gi
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as the equation governing the motion of the gimbal of the ith SDOF CMG.

Writing the equations satisfied by the outer gimbal angle ¢
of a 2DOF CMG requires considerably more manipulation than that required
The equation of motion of the outer gimbal is

angle §

to arrive at equation (4-82).

IG

0G and inner gimbal

oG IG g . 2 g 2 N g :
(IZZ + IZZ + Iyy sin 6IG + IZZ cos GIG) GOG + Iyy wg 6IG cos 6IG
. . g‘ _ g‘ .
+ 2 GOG (SIG (Iyy IZZ) sin 61G cos 6IG
(Ig - 18 ) sin § sin § cos § T
ZZ vy 0G IG 1G
g - g 3 _-)
+ (Iyy Izz) cos GOG sin GIG cos 6IG TBGB Og
0G IG g . 2 g 2
L_Izz + IZZ + Iyy sin GIG + IZz CcoSs GIG
— o _ G o T
Iyy wg cos (SIG cos (SOG + CSIG sin 6OG [IXX - Iyy cos (ZSIG)
g 2
+ 2 IZ cos GIG]
g . o IG
+ Iyy wg Ccos (SIG sin 60G GIG cos 6OG [IXX
T .
_ 18 g 2 BGB B
Iyy cos (26IG) + 217 cos GIG]
g _ 8 :
(Iyy IZZ) (SIG sin (2cSIG) |
- T OG IG -~
+ [0, 0, 1.] TBGB {wB X [TBOG (1 + I7) TBOG wB]}
- T g - — - S
* 10,0, 1.1 {(Tggg ¥p) * (Togig I° Togig Troa “B)? ”*M’aOG Cog %oq -
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while that of the inner gimbal is

18 g _ 2

g‘ ” * g‘ 'l .
(IXX + IXX) GIG vy wg (SOG cos GIG + (IZZ yy) 6OG sin GIG cos GIG

. I1G g >
+ [cos 6OG’ sin ‘SOG’ 0] TBGB {(Ixx + Ixx) wg

- T
M B

I1G g
vg X [Tgg @7 +19) T

B1G “Bl}

g . . o . IG g T
Iyy wg sin GIG sin GOG 50G sin GOG [IXX I cos (2cSIG)
g
+ 2 IZz cos cSIG]
+ |18 & sin s cos § + § cos § [IIG - 18 cos (258..)
Vyy € 1G oG OG 0G ""xx I1G
T .
g BGB B
+ 2 IZZ cos 6IG]
12 _ (1% _ 8
Iyy wg cos SIG (Iyy Izz) GOG sin (ZGIG) _J
* Ciq S1G —,%6 =0 . (4-84)

In equations (4-83) and (4-84), as in certain other paragraphs, neither subscript i
nor superscript i has been attached to any symbol relating to a 2DOF CMG.

Appealing again to equation (4-1) with q = 6; and manipulating in the light of
the definitions and relations pertaining to flexible appendage i, it is found that the
coordinate & must satisfy
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i . T ix 3 ~o> im -
IXX ei+Cei ei+Kei ei+li {1 Ti wB+(Ti wB)x {a Ti wB)}
N, N, N,
>T iz 1 21
+ 11 n CO] +Z Z n] TIK ]K
=1 =1 K=1
N, N. N,
>T d g1 i.1 i ~
- 9 i Z n]J . +Z Z ﬂ] K iK T1 vg
=1 j=1 K=1
N. N. N.
1 1 1
. 2T i i i . 1 7
- 26 4 Z ]JerfZZnKnj Kji| 1
i=1 K=1 j=1
> (MOON) = (SUN)
. . 3 R v, R
2T VY- (0) G -@ ~ =~ L Y s s
Yy {’Li TYYom }X {miTi T(Rs+ = (MOOK) |3~ " = (SUN) |3
IR l IR |
. . CM, N , CM,
L (R (MOON) _ B i) L (R (SUN) _ R 1) 2 .
"M s s ChE S . T T, 3
N oM, ;| T CM, F@n )
% (MOON) _ 3 i & (SUN) _ g 113
S S S S
N.
1
T S(0) , (@) 2G), .z 4 7T f > oW, % 43
i O+ T e R x F gy - ) vt 2. "% | ¥ Ty Fgorar
1 _
N.
1
2T f > M| s _ _ .
i ri+2 ns x T; dF \ oo ,/qui—o , i=1, ... NA
(Ap) =1 (4-85)

In equation (4-85), the symbols ng and 1\71gi denote, respectively, the force and
moment exerted by the Earth's gravity field upon flexible appendage i, the reference
point for Mgi being the instantaneous CM of the appendage (in its deformed state).
The vectors ?gi and Mgi are given_)by equations (A-30) and (A-31) in Appendix A.
Expressions for the differentials dF AERO and dﬁSOL AR 2re available from Appendices
B and C. The subscript A; on the integral signs indicates (as one should expect)
that the integration extends over the surface of appendage i. The surface integrals

are, in general, amenable only to numerical methods. On observing the absence of
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time derivatives of §i’ it shogld be recalled that % is a conftant vector 051 t})le B-
frame to imply that ¥ = § = % and, hence, that (a?/dth_ ¥, = 2T + T F.
Equation (E-1) of Appendix E provides an expression for the inertia matrix ! in
terms of that of the undeformed appendage and the mode shape functions and general-
ized bending displacement coordinates pertinent to the appendage. By equation (E-2),
one can compute the matrix Di necessary to the cgmputation of both F . and Mgi'
(The terms reflecting the dependence of ng on Dl can probably be safely neglected,

-

however, not all terms showing the dependence of Mgi on Dl can be discarded.)

To find the jth bending equation associated with flexible appendage i, one

invokes equation (4-1) with q equal to the modal coordinate n%. The result of much
manipulation is

N.
2 T !
i .i i i.i i® i N ~T - 2T Al N |
M]. (n]. + 2 C]- wj n]. + m]. n].) + 2 (wB Ti + ei i ) Z CK]' Nk
K=1
N N.
T T i T AT i
> ~ 21 1 21 I = i 1 1 ~ -
tug Ty <CO]+Z ng CK])+‘*’BT1 (J]r’LZ ik "k J Ti “B
K=1 K=1
N N
i i
T (=1 iz 2T i i g
* e1 1 (COJ * Z K CK])+ % 4 ("(]r Z J]K nK) Y
K=1 =
Ni T -
LT T i i > 2 v T2 2| T 3.W®
+261“’B Tl(]r+ZJanK)1+m1TRS+(Q ML )r1 1 ]
K=1
= Q i(G) + Q(iG’MOON) + Q(iG’SUN) + Q(iSOLAR) + Q(fxERO) ’ (4-86)
=1, N. , i=1, NA

. iis >i =i Ji Ji . . .
Definitions of the symbols Coj’ CKj’ ir? and iK will be found in Appendix F.

Of the several terms in the right member of equation (4-86), the generalized
force Q i(G), attributed to the Earth's gravity field, is of particular interest. In fact,

"
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the primary objective of the assignment out of which this paper grew was to deter-
mine the effect of gravity on bending. The author has made the following approxima-
tion to Q (iG).

"

T
(G) ->({)" = T _ T =2 .
Qni vomy ¥ T T Laglogy [86i1 gy Ay (Rps Agis Sop)
i
wp  Sugald, Gsin® e - 1) i 4. i DT o0y . ool
+ 5+ = M.n.+DO.—mi¢’. (% + y )
R . 2R, 1] J )
01 ol
3y, 15y a2 3, (1 - 7 sin? s ) N .
+ E + E 20 oi =T Di + Z i Dl
3 5 URoi rj K YKj
R . 2R, "
ol ol K=1
A I ORI YO i
i Vi n y Roi
3up 8’ o 7 i J i S 0) . L) > > MY ] =
- _________._R 3 n, Dr]. + Z K DKj - my (,Qi + ¥ n-"") w]. 2 n,
oi K=1
2 Ny
15 p 2 J, sin 6 . . . . . . T
E 20 oi »T i . - (0) (1) 2@y 7 (@D
+ —3 i gDrj+Z ng Dgj - m (5% + ¢y i
oi K=1
Ny
. . . . LTlT
i i A1 > (0) @G @y 7@ 2 >
+ l:Dr]. + Z nk DK]' m; (23 + ¥ n) 1P]- ] Up i
K=1
N N. N
3UE 1 . 1 1
1 1 1 1 1 1 1
* R 4 jrr ¥ Z K ( jrK DjKr) Z Z Tk Ny D]KIL
oi K=1 K=1 2=1
N, N. N
1 1 1
1 i i i i i 1 i >
) Drr] + ZnK (DKr] * DrK]) * Z Z K My DJLK]‘ YRoi
K=1 K=1 ¢=1
(4-87)
(Continued)
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1. 0 0 N.
WE S0 L@ M T i1 i ~ i i
- -> 1 1
— CA R A RO TR [ S SR [ NS S A Z ng Ok; *+ Dig)
ol 0 0 1. K=1
D @ @z 1
i % i 2 7rj
m., . . T
_ _2_1 (Ei(O) + q,(l) 3(1)) @}(1) s (4-87)
(Concluded)

By definitions given elsewhere (Sections 2 and 3 and Appendix A), the product

T T >
o‘oi]( 3) [_5011(2) Ag (Roir Aoir Soi)

T, T [
which appears as a factor of the first term in the right member of equation (4-87)
should be recognized as the i-resolution of the gravitational acceleration due to the

Earth at the point with spherical coordinates (Roi’ A Goi) referred to the E-frame,

oi’
that point being the CM of flexible appendage i. The reader's attention is here
called to that paragraph of appendix A which contains equation (A-30). The dominant

term of the several terms comprising the expression

-7 & T Tz
My oyt Ty T Lagglogy 04412 Ag Ropr Ao Sop) (4-88)
is
R '2 ] Roi
01

as equations (A-3), (A-4), and (A-5) clearly show. All terms through those in Roi_s

were not retained as the author first intended. Many were dropped because they
could not be expressed as the sum of products of functions of time and integrals
whose integrands are independent of time. §Still others were discarded because of
being either too unwieldly or of questionable importance. It is the author's contention
that the approximation (4-87) is more than adequate for any practical application, and
in fact, that most people would neglect all terms with the exception of expression

(4-88) or its dominant part. Retention of only the terms belonging to (4-88) is
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equivalent to ignoring the variation of the gravity field over the appendage and
assuming its magnitude and direction at all points of the appendage to be the same as
that at the appendage CM. Definitions of the D's with subscripts and superscripts

in equation (4-87) are among those of the time independent integrals in Appendix F.

The gravitational fields of the moon and Sun, ignoring their variation over

appendage i, make the following contributions to the ]'th bending equation.

T ¢ ooy _ g M 2 (MOON)
(G,MOON) - (i) ~ s s S
Q . Y Y. m, p,, T. T - , (4-89)
i j i"M “i N . CM, 2 (MOON) 3
o B (MOON) _ § 1]3 IR |
S S
o 2o g M 2 (SUN)
Q(iG,SUN) N 3}_(1) mou, T T s SCM. - —>S(SUN) 3 (4-90)
nk = (SUN) 3 ~ij3 |R |
j R, - R, | s

In writing the mathematical definitions of the generalized forces Q (iSOLAR) and
(AERO) b

Q i , one can go only as far as the integral expressions.
"]
q (SOLAR) _ [ SO 5 g (4-91)
T]i j i 7T SOLAR
i (Ai)
and
q (AERO) _ f ;O 7 aF (4-92)
o ¥ i ““AERO
i (Ai)

. » = = . . .
the differentials dF AERO and dFSOL AR (here supposed having the B-resolution) being
those defined in Appendices B and C. Analytical evaluation of the integrals in (4-91)
and (4-92), which are both geometry dependent and time dependent, is, in general,
impossible.

With slight modifications, the equations of motion in the preceding paragraphs
can be made applicable to the configuration of Figure 2 provided the boom is regarded

as rigid. The necessity of the addition of a few terms to certain of those equations
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is a consequence of allowing each solar panel an additional rotational degree of freedom,
that being the freedom to rotate about an axis parallel to the axis of the boom to

which it is attached. The symbol ¥ will here denote the angle through which the
solar panel designated "flexible appendage i" in Figure 2 rotates about an axis parallel
to the boom axis, which axis is parallel to the yi—axis when 6, = ¢, = 0. Introduction
of the coordinate ®; naturally subjects the expressions for ‘ji’ ﬁi and 5iT of Section

3 to change, the revised expressions being#*

J, = (5115 L93] (2

Wy = ei ii + s'oi (cos ei ji - sin ei ki)
0 sin 8. cos 0. 0 0 0
i i
~T _ o .
i —‘pl smei 0 0 +ei 0 0 -1
-cos ei 0 0 Lo 1. 0

The rotation matrix ”fi is still defined by Ti =d i Ti’ it being understood now that

Ti = [T(B+i)]e_ 0.=0’ and the relations (3-6) and (3-8) continue to hold. Equation
i i

(4-73), the moment equation, remains valid as it stands. As for the other equations
of motion, the appearance of only (4-53), (4-85), and (4-86) need to be altered,
while (4-80) and (4-81) should be deleted since there aie no swiveled engines (the
RCS thrusters are fixed relative to the boom). To account for the elastic restoring
force —Kpi ¥, and viscous damping force -CWi ‘bi’ both of which resist a change in

p;, one should add to equation (4-14) the expression (1/2) ZK 0 «piz and to (4-15)
i i

the expression (1/2) Z Cp ¢i2

i i

, the index i having the appropriate range.

*As evident in the expression for ji’ it is here supposed that passage from the "null"
orientation of the i-frame to its instantaneous orientation is effected by a 2, 1

sequence through v and 8-
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After modification, equations (4-53), (4-85), and (4-86) read as (4-53)', (4-85)',
and (4-86)', respectively.

35 2 ->
= T T4 = > >  (SUN) . = (MOON)
mTRS—m(Q + 0 )rCM+FgB+FgB +FgB +FT
NSE . »
- — - T -
+ Fapro * Foorar * 2o Mgp bpp gy * 20 gy
i=1
NP
-Zm('g’./_\).+2é.§2T/_\’)
pi “°pi " pi pi pi
i=1
NA X
NT - -._; . ~ . .—; - ’:' ~ N . N -
- Z m. {T. [\y(l) n(l) + 2 Q.T \y(l) n(l) + (Q.T + Q.T ) (2.(0) + ‘P(l) n(1)>]
1 1 1 1 1 1
i=1
~T . 30 - - . NS
+20T T [¢@ 3O 45T (zi(o) +y® n(l))]i , (4-53)"

N. N. N.
i i i
3T .1 21 i Al
t L Z”j Coj +Z Z 5 'K YiK
=1 =1 K=1
N. N. N,
i i i
o 7T igil i.1 i - >
2 Z ]jr]+z " "K¥ K T; vp
j=1 =1 K=1
N N. N
i i 7
_ 7T i i R | i g
261 4 Z n] rj ¥ Z Z "K nj Kj 1
j=1 K=1 j=1

% (MOON) g (SUN)

L 3T {E(o) ey 9(1)}X UM s Vg tg

4 i n R (MOON)|3 E (SUN)l3
S S

=
—
!
=183

i~i S
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. CM, . . CM,
iy (RS(MOON) SR Ly (g SN i

- oW, - = o £ @ el §
> mooN) = Mi3 > (suN) _ = My3
R - Ry R - Ry
S S S S

2T | = - (0) (1) =) = f > (1) =(i) N
1 {Mgi + [JLi + ¥ n’] x bgi + (ri + n"’) x Ti dFSOLAR

i i . . : . i . i
+ . - . .+ 0, . . .
(IX cos el Ixz sin el) spl 81 ¥ (IXy sin 61 + IXz cos el)

o 2 .41 2 2 i i .
+ ¥; [Iyz (cos ei sin ei) + (Iyy IZZ) sin ei cos ei]

1 i

S . 1 _ ~ -
+ 2 soi [0, sin ei, cos ei] {I 5 /p I I(3X3)} Ti vy
N N. N 0
i i i
oo T 1 71 1.1 g1 _ _ QENY
2 91 Z ] é/r] +Z Z n nKj]K cos 6 My =0 ,  (4-85)
=1 =1 K=1 1 (Conc.)
] -sin 6
Ny
i, i i i i i 5T T =T i =i 2T ~T =i
M]- (n]- + 2 7 ow, N, + ow, nj) + 2 (wB T1 + Wy ) Z Nk CK + ug Ti (COJ
K=1
Ny . N - N
i =i LT =~ i i g1~ - 2T o i =i
+ Y g Cpo) + dg T (;/].r »Y g 0 Ty g + 5 (S ¢ > g Cxy
K=1 K=1 K=1
Ni Ni
=T i g1, = T T , 4i i1, =2 3
+ (é/].r+z nK.-f/ ) wg + 246 Ty ('!jr’“z ”KJ]'K) wp +my [T Ry
K=1 K=1
2 . .
. 2 ~T . AE
+ (QT " QT ) ri]T Ti ‘P} = Q i(G) + Q(;3,MOON) + Q(iG,SUN) + Q(iSOLAR) + Q(i RO)
nj n]- Tl]- Tl]- n]-
j=1, ...N; , i=1, ... NA . (4-86)'
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At least one more remark regarding equation (4-86)' is in order, that being
that it can be made to apply to a flexible appendage which is denied rotational degrees
of freedom (such as 0, and ¢. ) by merely setting ﬁ? and T, to 0 and replacing T by
Ti' When & and p; are 1dentlcally zero, the rotat1on matrlxj becomes the 3x3
identity matmx and Ti is the same as Ti' The allied equatlons (4-87) through (4-92)
apply without change provided that Ti is replaced by Ti when ei =z 0 and $; = 0.

The system coordinate v, must satisfy

i 2 i .2 B i . Ny 2. + K .
(Iyy cos ei + IZZ sin ei 2 Iyz sin ei cos el) 2 + C wi ; “’i vl
+ (Ii cos 6, - Ii sin 6.) 6. + 2 6, . [Ii (sin2 9, - cos2 8.)
Xy i Xz i7 71 i’ tyz i i

i i . . i 1

i m -
+ (Izz - Iyy) sin 6, cos ei] - 2 & [0, sin 6, cos ei] I - 3 7; I I(3x3)} T1 W
- éiz (I; sin 6, + I cos 6.) + [0, cos 0,, -sin 6] I’ T1 IEB + (’Tl wﬁ)
N.
Ni N1 Ni i
im - 1 2 iRl i g1
x 1 T1MB+Z n]. O]+ZZ K n] Kj Z j
j=1 j=1 K=1 i=1
N. N.
- ~ i pd = (o) (i) - =
i.igi ~ - A T > F .
+ 20 2y g ) By 8p r T - Mgy - T v x Fyy
=1 K=1
N i) -(i ~oa2 - (i) »>@{) T. dF
- / & + oD i) x T, dFgopag - f (ry + 077 ) x Ty dFpppo
(A (Ai)
g = (SUN
- (0) (i) (1) 2 M RS(MOON) g Rs( )
T yx |mp T, \T R+ 7_(MOON) |3 * & (SUD 3
s s
. CM.,
(R, (MOON) _ g CMI) s @ (B8UN) _ g ) 2
UM s s « T T ~ _
- T CM * CM s e D L,
> i - i i
i, (MOON) - Ry i3 B, (SUN) - Ry i3
(4-93)
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where the symbol 0 denotes the control torque applied to induce the appropriate
i
change in ¥

It is important to note that equations (4-85)' and (4-93) were written for an
appendage similar to that in Figure 1, but having two rotational degrees of freedom,
and on the assumption that the solar panels designated "flexible appendage i" and
"flexible appendage i + 1" in Figure 2 may move independently of each other, and
further, that these equations hold whether both the ei motion and the soi motion are
executed simultaneously or & is held constant while ¢35 changes and 2 is held
constant while 8 changes. Obvious simplifications are possible if either 6; or v, is
constant while the other changes (in such a case, equation (4-85)' becomes (4-85)).
If flexible appendages i and i + 1 of Figure 2 constitute a single unit and always move
in unison (so that ei+1 = —ei, Pl = «pi), then equations (4-85)' and (4-93) apply
to the combination (which should be relabeled "flexible appendage i") provided the
symbols with subscript i or superscript i in those equations are pertinent to the

combination.

Terms of (4-53)' and (4-73) which are impertinent to the configuration of Figure
2, such as those attributed to swiveled engines (not present on this station)., must be

deleted as should an entire equation corresponding to a non-existent system coordinate.

If a module, which may be regarded rigid but is joined to the central carrier
by means of a flexible attachment, is not adequately modeled as a point mass with
only one displacement d.o.f. relative to the carrier then, obviously, an equation such
as (4-74) does not provide an adequate description of its motion. Permitting such a
module to have three translational d.o.f's and three rotational d.o.f's relative to the
carrier would require that six equations be appended to the system equations of
motion, and further, that still more terms be added to equation (4-53), the system
translational equation, and to (4-73), the system rotational equation. Nomenclature

pertinent to this type of component follows.
NRB = number of rigid components with 6 d.o.f.'s relative to carrier

Mppg. = mass of the ith rigid component with 6 d.o.f.'s relative to carrier

-
FRB = position, referred to B-frame, of the origin of x
i

RB. YRB. “RB (RBi frame)
i i i

7
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XRBi yRBi zRBi — a right-handed rectangular frame, arbitrarily but sensibly

X'

l:]RB.

_ .. . . ' 1
SOPRBi’ «pYRBi, Y.RB. Euler angles defining the orientation of the (RBi)

RB.
i

1
TrB

TY

RB.
1

H?

RB;
i

3(0)

RB.
i

>y

RB.

1

' . _ . . . .
RBi yRBi zRBi the (RBi) frame has origin at the CM of mRBi and is

oriented, at rest relative to the B-frame (and hence, at rest
relative to the rigid central carrier), and with origin in the

vicinity of the idealized attachment point (or points)

oriented as the RBi—frame when megp has not undergone a

rotation relative to the carrier. (The (RBi)' frame is at

rest relative to mRBi)

. . . ' . '
the inertia matrix of mRBi referred to XRBi yRBi ZRBi (context should

make clear whether the symbol Mp B denotes the body whose mass is
i

mRB or the numerical value of that mass)

frame relative to the RBi—frame

T (§+RBi) — a rotation matrix defining the transformation from the B

resolution to the RBi resolution

T(RBi -+ (RBi)') — the rotation matrix defining the transformation from
the RBi resolution to the (RB;)' resolution

h h
[ erBi](l) [ “’yRBi](B) [ ‘pPRBi](2) for a 2,3,1 sequence throug

‘pPRBi’ ‘pyRBi’ gerBi in passing from the RB, orientation

to the (RBi)' orientation

' — n 1
TRBi TRBi =T (B~ (RBi) )

position, vector referred to the RBi frame, of the CM of Mpg. (the
i

origin of the (RBi)' frame) when m has not experienced either

RB
i

translation or rotation relative to the central carrier

displacement, relative to the carrier, of the CM of Mpg - (This vector
i

has the RBi resolution)




YRB. = angular velocity of the (RBi)' frame relative to the RBi frame (this
vector has the (RBi)' resolution)
“1RB, YPRB.
i i
“RB, - | “2RB, = TurB, | 9yrB,
i i i i
w @
3RBi rRBi
t
[ @®Bp L
o = (i) m
"B\t mByr BBy
rsin YoRB R 0 , lT
TwRB. = | cos ‘pyRB. COS ¥ . pp , sin ‘erB. , 0 (for a 2,3,1 sequence
i i i i
through ¢ ,
-Cos p sin v cos ¢ 0 PRBi
yRBi rRB, ’ rRBi ’ )
- _ 'pyRBi’ *OrRBi
0 ) -
“3RB “2RB
T _ -
“RB, ~| “3RB, 0 “IRB
-w w 0
2R B. 1RB
— —
£ T d T ~T T
Tre. = a Tre. ~ TrB, %rB,
i i i i
oI =2 x V for any vector Vv having the (RB.)' resolution
RBi RBi 1
- CMRB.
Rs ! = position vector of the CM of mp g referred to the S-frame

-—

rkB = position vector of a generic point of m
i

1 ! 1
RBi referred to XRBi yRBi zRBi
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A = surface area of mRBi

-y ,'fT -

RBi = RBi wRBi = B resolution of

RBi (also the B resolution)

o= _d_) I L
RB. dt RB. RB. “RB.
B 1 1 1

MgRBi = torque on mRBi alone due to Earth's gravity field

MgRéiSUN) = torque on mRBi alone due to Sun's gravity field

IﬁgRéIiVIOON) = torque on Mpg. alone due to Moon's gravity field

IVI)R];"A‘TTACHMENT) = sum of the damping moment and restoring moment resist-
i

ing, through the attachment, any rotation of Mpp

relative to the carrier

The equation governing the translational motion (relative to the central carrier) of

mRBi is found to be
CxRBi 0 0 K ¢RBi 0 0
MpBi “RBi * 0 CyRBi 0 |Agpi * 0 KyRBi 0 ARBi
0 0 C.RBi 0 0 K RBi

T .,.T > - T T F + 7L -=+(0)

* mppi Trpj {2 27 Tppi bgpi T (97 + @7 ) [rpp; * Trp; (Agp; + 4rBi!

> (MOON = (MOON) _ z CMRBi = (SUN
2 MM Rs( : "M (Rs( oM - Rg B Hs Rs( )
T8 = @mooN) 37 T |z (MOON) _ 3 CMRBI;3 ' |3 (SUN) 3
u_ (R (UM _ § CMRBLT )
: - F pp: - Ton. (dF )
[R(SUN) _  CMRBA|3 gRBi ~ 'RBi f AERO’ (B)
s (Argi)
(Arpy)
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Clearly evident in equation (4-94) is the assumption of viscous damping and linear
restoring forces at the attachment. The symbol EgRBi denotes the RBi resolution

of the Earth's gravitational force on mpp; and is obtainable by an equation analogous
to (A-30). The procedure for finding ﬁgRBi should be clear after reading the
paragraph containing equation (A-30). In fact, that portion of the paragraph starting
with its second sentence can be made applicable to FgRBi in the following way:

replace i by RBi when i is used as a subscript or superscript; replace the expression
"flexible appendage i" with the symbol Mp s and delete the expression "in its deformed
state;" delete also the remark within parentheses appearing as the last part of the
final sentence of that paragraph; and ignore the references to Sections 2 and 3. In

passing, one may observe that if Mg p; is regarded as a point mass (having a null

inertia matrix and zero surface area), if RI({%) = 3, if the two components AyRBi and
ZRBi of the vector ARB = [AXRBI yRBi’ ZRBI] are constramed to be zero,

and if both members of equation (4-94) are premultiplied by lRB = [1, O, O]RBi’
the result is an equation completely equivalent to (4-74), in content, that is, which

is as it should be,

The contribution of the relative motion of the m =1, ... N to the

., 1
RBi’ RB’
"system" translational motion is realized by adding to the right member of equation
(4-53) the expression (4-95) below, and the contribution to the "system" rotational
motion is expressed by the addition of expression (4-96) to the right member of

equation (4-73)

NRrB ) Np
] T 3 T 3 ]
2 MeBi TRBi “RBi Z Mg RB1 SRBi (4-95)
i=1 i=
NrB

N

- = 3 T —*(0) 1; T =2 i
2 meni UTrei - Tom * Tri “rBi * Smep! X [TRB1 Agpil + 9 [(Fgrp; - Tey

->(0) 9 ;
* RB1 (Lgpi * 4gpi)) X (TRBl Appi 1}
NgB
) ~T RBi - S RBi - . ~T MRBi -
2 {TRBi J “rBi ¥ RBi ¥ Srp * 95 * Tgpill Trpp!
i=1

" (4-96)
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If equation (4-73.14) is designated the "system" rotational equation, then the expres-

sion (4-96) with ¥ .,, deleted should be added to the right member of equation (4-73.14).

CM

The second sum in expression (4-96) is equivalent to the expression (4-96A),

Npg

. FL RBi 5 LN S oy ~T [IRBi = -y )
2 Tgrpi [ Trps ks * T + Fhpp) * Trpill " Tgpy Tppy) - (4-968)
i=1

which expression one could rightly expect after an inspection of equation (4-73).

The rotational motion of MR R relative to the carrier is determined by

™" Ggpi * Trgi “B * %rpi Trei %) * Crpi * Trp, “B’
RBi ,- ~ - Y _ ]
x [J7 (igpy + Tgp; 9p) MorBj f 'RBi
(ArBi)
~ — _ =y ~ —>
X Tppi (FsonAR’B f 'rBi ¥ TrBi (¥ AERO’B
(Apgy)
Y (SUN) _ M (MOON) M (ATTACHMENT) _ 3
gRBi gRBi RBi ’
i=1, ... NRB . (4-97)
If the dimensions of Mp g are not sufficiently large to warrant retention of the gravity

terms, solar terms, and aerodynamic terms in equation (4-97), as is likely to be the
case, then they may be ignored along with terms arising from certain other sources of
excitation mentioned near the beginning of this section (see the paragraph following
equation (4-1G)). Even if deemed important, the gravity terms due to Sun and Moon

should be adequately approximated via equations similar to (4-55) and (4-56). Equa-
(SUN)

tions (4-55) and (4-56) are made directly applicable to the computation of MgRBI

and MgRBi(MOON) by merely replacing the subscript B by RBi, the symbol Dby DRBI,
and the superscript CM in the definitions of ﬁSUN and ﬁMOON by CMRBi. Just as
FgRBi may be approximated by an equation similar to (A-30), as explained above,

S0 can MgRBi be approximated by an equation similar to (A-31).
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Not only would the presence of the m =1, ... NRB’ require the addi-

o, 1
RBi’
tions to equations (4-53) and (4-73) as described above, but would result in slight

>
change in the expressions for rCM’ réN}, andUas well. To the expression within
braces in equation (D-1), one should add

Np

Z mp RB1 ApBi (4-98)

while to that within braces in equation (D-2), one should add

NRB

2 T *(0)
2 megi Crei ¥ TrBi *RB1’

Obviously, the necessary modifications to (D-3) and (D-4) are made by adding the
first time derivative of expression (4-98) to the expression within braces in equation
(D-3) and the second time derivative of expression (4-98) to the expression within
braces in equation (D-4). Equation (E-4), defining the system inertia matrix D

would be modified by the addition to its right member of the expression (4-99).

RBi T
Z { RB1 D RBIS (qRBl) 5 (- qRBl)} ‘ (4-99)

The vector aRBi’ not defined in Appendix E, denotes the instantaneous position of

the CM of Mp B relative to the B-frame and is given by
- 2 .2 T =(0) -
dggi = TRBi ~ *cm T TrBi (“RBi * “RBY

The subsequent modification of equation (E-5) is effected by simply adding to its

right member the first time derivative of expression (4-99).

No attempt will be made in this paper to assess the effect of liquid sloshing on
vehicle motion since it is hardly possible that the author could add anything to the
extensive literature on that subject. However, with regard to slosh, Reference 21
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should be cited as one providing a collection of formulae pertinent to a variety of
tank configurations plus an exhaustive list of technical papers on sloshing in both
high-g and low-g environments. Due consideration cannot be given to slosh until
tank geometry and mechanical analog of the liquid have been decided. Only then

can one write the sloshing equations and add the appropriate terms to equations
(4-53), (4-73), and (D-1). Introduction of the mechanical analog requires that the
contribution of the fluid to the system inertia matrix D(see equation (E-4)) is
understood to be the "effective" inertia matrix of the fluid. The structure of some
slosh models is such that certain of the equations (4-74) or (4-76) may be designated

as slosh mass equations.
V. REMARKS ON SIMULATION

To digitally simulate vehicle motion, such a simulation being nothing more than
the numerical solution of the system of differential equations descriptive of that
motion, one must first recast the underlying equations in a form suitable to pro-
gramming, that is, a form amenable to the direct application of the selected numerical
integration scheme. Use of the popular fourth order Runge-Kutta technique, for
example, would require that the system of equations be put in its equivalent first

order form.

Also necessary to the construction of a simulation program, as clearly indicated
by the equations in Section 1V, are many subsidiary relations, not the least important
of which are the control equations. Linked to the control equations are expressions
for approximating measurements made by onboard sensors. Equations for determining
the output of the filter networks designed to filter those measurements should be
implemented. It is hardly necessary to point out that the equations in the previous
sections and the appendices are indicative of program input with the exception of

such data as the time interval of interest, integration step size, etc.

The reader who is concerned about the existence and uniqueness of solutions

is hereby advised to consult the literature on ordinary differential equations.

A proposed sequel to this paper is one wherein the equations of this paper are

applied to one or more specific station configurations.
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RIGID CENTRAL CARRIER

(mg)
FLEXIBLE APPENDAGE i
dmemg
Q=
Z
CM OF ENTIRE SYSTEM z rs
X g
r
fi’ dmem; AFTER DEFORMATION
dm € m; BEFORE DEFORMATION
-2 Ccm
R -
S y
= (SUN - (MOON
MOON . wR W w R, (MOON
ZN RNS 3 +
=2 IH (SUN)IS lﬁ» (MOON)l 3
- (MOON) Rs S S
\Rs
AN Zg
\\ YN
-
-\ RNs XN
. (Suﬁ) NEWTONIAN FRAME (ORIENTED AS X Y Z)
Rs
Ys
SUN
Xs
Figure 1.
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APPENDIX A

ON GRAVITY FORCE AND GRAVITY TORQUE

The manipulations leading to the expressions below for the force and moment
exerted by the Earth's external gravitational field upon a body of arbitrary shape are
based upon the gravitational potential function of Reference 6 which includes spherical

harmonics through fourth order and reads, in the notation of this paper, as follows:

4 n
Vg a\* m .
Ug =5 {1 - Z Z Jnm (F) Pn (sin 6) cos m (X - Anm)} , (A-1)

wherein Vg denotes the product of the mass of the Earth and the universal gravita-
tional constant; R, X, and § are the spherical coordinates of the field point relative
to XEYEZE (see Sections 2 and 3); >‘nm is the longitude (positive east of the prime

meridian) of the principal meridian of symmetry for the nm harmonic; the Jn n = 2,

3, 4, m = 0, ... n, are dimensionless coefficients peculiar to the planet Eartrg with
le = 0 by virtue of the assumption that the ZE axis (and also the Z axis) is a
principal axis of inertia for the Earth; a is the mean equatorial radius; and Pg (sin §)
is the associated Legendre function of the first kind of degree n and order m defined

by
" o dam P_ (sin 6)
Pn (sin §) = cos § m ,
d (sin §)

the function Pn(sinG) being the Legendre polynomial of degree n in the argument
sin §.

As seen in equation (A-1) the dimension of Ug is that of work per unit mass or
potential energy per unit mass, the equivalent of the product of unit of force and
unit of length divided by the unit of mass. From dimensional considerations alone it
is evident that a differentiation of Ug with respect to distance in a given direction
(the directional derivative, that is) gives the gravitational force per unit mass, more
frequently called the gravitational acceleration, in that direction. It can also be
argued (Reference 7) that a differentiation with respect to arc length along the curvi-

—> d -
linear coordinate curves whose unit tangent vectors are the Up, u, and u . defined

$
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in Section 3 gives the components in the directions of those unit vectors of A g’ the
symbol Kg here denoting the acceleration due to the Earth's gravity at the field point
with spherical coordinates (R, A, §) referred to the E-frame. Thus,

N aU ) - ( 1 aUg’)»
Ag = Agr Up * fg) Uy T Ags Us :(BR;' YR *\Rcos s 37 /™
L AU\
+<f{ ———g-as )u5 . (A-2)

The results of performing the indicated differentiations in equation (A-2) are given in
Reference 6 and are repeated here (in the notation of this paper) for ready reference.
(The author of this paper has verified, through tedius scratchwork not shown, that
the results appearing in Reference 6 are, apart from some obvious typographical
errors, correct. Minor typographical errors are also present in the expression for
the potential function in the reference cited.)

M 2134
_ g _ "E _ a 20 2 2 _
AgR FE ) { 1+ (ﬁ) [———2 (3 sin” §-1) + 9 J22 cos”® § cos 2 (A A

"R g 22)

a in 2 . a o2 .
* 2(§) Jgg (9 8in” 6-3) sin & + G(R) Jg1 (5 sin” §-1) cos § cos (A -~ Ag))

a 2 .
+ GO(R J32 cos” & sin § cos 2 (A - >\32)

2
+ 60 (%) T g cos® § cos 3 (- Agy) + %(%) Ty (35 sin? s - 30 sin? s + 3)

2
a . 2 . _
R) J41 (7 sin® 6 - 3) cos § sin § cos (A >\41)

2
a . 2 2 _
R) J42 (7 sin” § - 1) cos® § cos 2 (A >\42)

43’

2
+ 525 (%) I 43 cos® § sin § cos 3 (A - A
(A-3)

2
a 4
90 I_{) J44 cos” 8§ cos 4 (X - >\44)]} ’




gx:Rcosé 3 A

noj o

+
nof o

5
2

3
|
'JUIT:

e}
A
= e

2
) {GJzzcosd sin 2 (x - >‘22)

(aﬁ) Jgy (5 sin® §-1) sin (A - Xgp)

32

2

J33 cos” § sin 3 (A -

)JBzcos § sin § sin 2 (X - A
) 33)

I (7 sin? 6-3) sin & sin (A - A

Jyq (T sin® 6-1) cos & sin 2 (A - )
2

a Jd cosza sin § sin 3 (A - A

R) 943

43

2
a 3 .
+ 420 (R) Jgq €08° 6 sin 4 (A - Ay, } ,

2
<aﬁ) {—3J20sindcos6 +6J22cos6 sin 6 cos 2 (X - X

=s B

.2
)J30 (59 sin” §-1) cos §

%) Ty (15 sin® 6-11) sin & cos () - Agp)

2 _
J32 (3 sin” 6-1) cos § cos 2 (A A32)

2 .
) J33 cos” § sin § cos 3 (X - >\33)

a 2 2
(R) J40 (7 sin” 6-3) sin § cos §

41)

42)

(A-4)

22

(A-5)
(Continued)
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5 (a . 4 .2 _
+ 5 (R) J41 (28 sin” §-27 sin™ §+3) cos (A 7\41)

26-4) cos & sin § cos 2 (X - A

2
a .
+ 30 (R) J42 (7 sin 42)

2
a 2 2 _
+ 105 <I_{> J43 (4 sin® §-1) cos™ & cos 3 (A A43)

+

2
420 (%) 44 cos® & sin § cos 4 (A = Agy) } , (A-5)
(Concluded)

The force and torque* (attributed to the Earth's gravity field) experienced by
a space vehicle** will here be denoted by ng and MgB’ respectively, the second
subscript B being indicative of the B-resolution.

Definitions of symbols incident to the development of expressions for ng and

MgB are in order now (some being repeated elsewhere).

ﬁSCM = position referred to the S-frame (see Section 2) of the CM of the entire
vehicle system.

r=x1+ y f)+ z K = position referred to the B-frame (see Section 2) of a
generic point of the vehicle.

ﬁs = ﬁSCM + T % = position of a generic point of the vehicle relative to the
S-frame (T = T(S+B) defined in Section 3).

3 -7 CM _ . Z CM _ag g iz oM

R, =T R = B-resolution of R ™", R, = ]ROI = |RS |

3 _ => _ 3 - _ . - 13 2 —

R =T R, =R +TF = B-resolution of R, R = |R| = |[R_ + r|

(GR)B = R/R = B-resolution of HR (see Section 3)

-3 . . = CM
= Ro/Ro = B-resolution of RS

—

2 oM

Ro /le

* The moment reference point is the vehicle center of mass (CM).

** The body need not be a space vehicle but may be any body of arbitrary shape
and finite dimensions occupying a position in the Earth's external field.
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n="rT Ks = B-resolution of k)s
IXX Ixy IXZ
DE Iyx Iy v Iyz = Inertia matrix of entire system referred to xyz (the
B-frame with origin at the system CM).
I I I
zZX zy ZZ

(m) (m) (m)
I€n=—/andm,€¢n, E,n =X, ¥, 2
(m)
f( .) dm = ./.‘/].( ) o (x,y, z) dxdydz , (o(x, y, 2z) = mass density)
(m) (m)

(as used immediately above the subscript (m) indicates that the integration is to be
extended over the volume occupied by the entire vehicle system. Elsewhere the
symbol m will denote the numerical value of the mass of the entire system.)

Tr(D) = trace of Dz Ixx + Iyy + Izz

In approximating MgB the contribution of the longitude dependent terms (the
-
tesseral and sectorial harmonics) was completely ignored while in approximating FgB
their effect was accounted for "in part," that is, their variation over the vehicle was
ignored, it being assumed that their values at any point of the vehicle differ
negligibly from those at the vehicle CM.

The contribution to F B of the dominant term in the expression for AgR’ here
denoted by ng(o’o), is given by
. (R_+7)
F (0 0) - /dF R(O 0) - ) —_79 53 dm
& R, + T
(m) (m) "o
mug . 3wg ik _3ug 7:0 - sat [lg, &, ., a-e
%~ —3 UYpo " -7 UYRo 7|/t - SUp, UUpy |Ugey» (A-6)
Ro R0 2 R0
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while its contribution to MgB is

3 u

v (030) — > o (O’O) E =2 x4 -

W@ = fFxa O —3 Upo * gy - (A-T)
(m) o)

In arriving at the approximations (A-6) and (A-7), use was made of the approximate

expansion
-K-2
K R
-K > -, -K -K -K-1 —>T > o ST o
R & = \Ro +r| "y Ry KR Up, T 5 r
K (K+2) -K-2 -7 > 5T > )
+ =5 R, Up, T ¥ Up, (A-8)

and the relations

/f" dm = 0 (by definition of the mass center) |, (A-9)

7+ (A-10)

"

By

o

3

n
DO} =

(m)
1. 0 0
o 1 - ;
/r 2T am = - []+ 5 7= L) » Loy 2|0 1 0 (A-11)
(m) 0 0 1.

in addition to further simplifications made by discarding all terms in xly] K when

i+ j+ k >3 (such terms have denominators of the order of R05 and greater).

It should be remarked that the axes xyz (the B-axes) have not been restricted
to be principal axes of inertia and further that the inertia matrix D must be inter-
preted as that of the instantaneous deformed configuration referred to the xyz axes
which have origin at the instantaneous position of the CM.

-

In finding the contributions of the zonal harmonics to F B and MgB (t

(k,0) z (k.0 & (k0%
gR > T gR T gs > gs
k = 2, 3, 4) the relations (A-8), (A-9), (A-10), and (A-11) again find repeated
application as do the following:

hese

contributions being identified herein as F (k,o)’
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sin 6y = ffgo n , (60 = geocentric latitude of vehicle CM) , (A-12)
R T >

. _ T - _ _O_ . K r _

sin § = n (uR)B =R (sm 60 + Ro ) (A-13)

cos § (36 )p =1 - sin § (ffR)B (A-14)

the relation (A-14) being invoked only in the development of expressions for the
ﬁgé (k,0) and Mgs (k,o), k = 2, 3, 4. Notice that the use of (A-14) circumvents the

need for an approximate expansion for cos §.

No exposition of the detailed manipulations leading to the approximations below
will be given, it being presumed that the reader can, with the time and inclination,
supply all the manipulations omitted,

2 .2 o 3 >
2 (2,0) _ /df (2,0) _ 3 Vg & g0 / (3 sin® 6-1) (R, + 1) o
oR oR 3 g
(m) (m)
3 u. aly
v —E—2 M@ sin? e -1 + 2 (7 sin? s.-2 /e[
R R
(o] (o]
1 . 2 >T >
+—— (35 - 189 sin” 6 ) Uy DuRo
9R
(o]
42 sin §
_ 3 T|]|= o =T[]=>
R————6 n Dn + R 6 n DU.R } uRo
o o
3 u a2 d
E 20 .2 1 N
+ — {21 sin® 5 _-5) [[] - 3 Tr([]) Iaxsy] Sro
[0}
. 1 7' -
- 6 sin 6 _ (] - 3 7D Igegyl BY (A-15)
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3 u, a” d .2 >
= (2,0) _ N = (2,0) _ _ E 20 { =3 (3 sin” §-1)r }
MgR = /r X ngR = — R0 X / R5 dm
(m) (m)
3. ald
E 20 . 2 - > . - -
8y - ——-—————2 - 5 {(21 sin 60—5) Up, X (DuRO) - 6 sin 60 Up, X (Dn)
0
+ 3 sin 8, 7;'([]) (uRo x n)} , (A-16)
. 2 . 3 -
(5 sin” §-3) sin § (R_ + r)
Z  (3,0) _ Z (3,0) _ 3 o
FgR = /ngR = 2 Wg @ J30 / R6 dm
(m) (m)
v 2up a3J30{—m—5 (5 sin® 6_ - 3 sin 5 )
Ro
3 .3 .
+ ;{—7 (15 sin 60 - 8 sin do) 7;'(D)
o
9 . . 3 T -
"= (21 sin 6 - 55 sin® 6 ) Up_ DuRo
o
15 sin §
_ o -T - 1 . 2 _ T — —
— 1 []g + — (135 sin® §_-21) & DuRo} tr,
R R
o o
2y asJ
E 30 . . 2 1 -
i { 3 sin 6, (15 sin® § _-7) [D s 7D 1(3X3)] i,
o
_ . 2 1 e _
+3 (1 - 5sin® 5 ) [D 2 7;-([]) I(3X3)] R } , (A-17)
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=4

My

gR

(3,0) _

+
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5 up &’ Iy 1 4 2 o
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(m) (m)

E8 40 { m (35 sin? 6§ - 30 sin?
R (o}

S 0+3)

~—1§ (385 sin?

Ro

6, - 300 sin® s _ + 20y Tr[)
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o

20 sin §
30 .2 ST o in2 s -27y BY (14, Vg
E_@ (1-7 sin 50) n Dn + 8 (77 sin 60 27) n DuRo}uRo
o o

5uE3.4J

———8—‘-19 { (385 sin
SR
(0]

4 . 2 -
§, = 270 sin §,+2D) DuRo

4

. 2 a2 1 : ) 2
20 sin 6 (7 sin® 5 -3)[ |5 - 3 (385 sin® 5_ - 270 sin

sor20) Te([D gy,

10 sin s _ (7 sin® 5 _-3) Te([]) & b (A-19)
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=
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+

g = (2’0)_ 2 > Sin6
/erFgG —3uEa Jzonx{/ ) ?dm}

(m) m R
Csugaluy Box{ /0 gan )
Mg 20 "o RO r
(m)
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-3y a” d
E 20 - - . . - -
n 5 {n p.4 (Dn) + sin 60 [7 sin 60 Up, X (DuRO)
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-5 1 x (DuRo) -2 u X ([In)

+3 7D @ x g1 } : (A-22)

3
-3 u, a" J
g G0 _ E 30 1 2 -
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{_3uEa f1(5s1n Gl)dm}
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3up a’ 30 1 3 o>
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3
S ¥E? Ta0 (m (5 sin® 6 -1) (& - sin 6_ B )}
9R 5 o o Ro

0]
3 ug a3 I30 35 2 ST >
——21_{—7_ {[5(1 7 s1n ) ) r(D) +—2— (9 sin 60—1) Ug, DuRo

(o]

55 [J# - 70 sin s &7 [[dy 1% + [3 sin 6, (15 sin® s TrdD

2

9 3 . —>T - _ . —)T -
7 sin 60 (7-55 sin 60) Up, DuRo 15 sin 60 n Dn

(A-23)
in? s -mrT . L2 L . (Cont.)
(135 sin 7)n DuRo] Upo * 8in 6 (45 sin 6o 7)DuRo
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+ (1-15 sin? 5 ) [[ & + § [sin 6 (7-45 sin® 5 ) Gy, + (15 sin® DRI (DY,

(A-23)
(Conce.)

pMo (3,0) _ /?X aF (3,0) _ 3 {___2__39 /‘_.% (5 sin? §-1)T dm}
(m) (my

a
——E—z———@ /—13 (5 sin® § - sin a)?dm}
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15 Hg @ J30
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B 40 { sin s (45 sin®
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(A-24)
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(A-26)

As remarked in a previous paragraph, the variation of the longitude dependent
terms (in the expressions for the components of A ) over the vehicle will be ignored,
it being assumed that their values at any point of the vehicle are equal to their
values at the vehicle CM. An immediate consequence of this assumption is that the

approximation to MgB is devoid of any contribution from the tesseral harmonics whose

contribution to EgB must then be

o> %

_ T _ T Tk _
FgB = mT [oto](3) [ 60](2) (Ag )(o) . (A-27)

In equation (A-27), m denotes the mass of the entire vehicle system; T = T(S+B) is
the rotation matrix defined in Section 3; the angles o  and ¢ are, respectively, the
right ascension and declination (geocentric latitude) of the vehicle CM, these being
given by (among other expressions)

1

CM CM

aoztan‘ Y /X, 0 <a<2n ,
60 = gin (Zs /RS ), - /2 < 60 < w/2
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where XSCM, YSCM and ZSCM are the components of ﬁSCM and RSCM = Iﬁscml; and
Zg denotes the "longitude dependent part" of Kg with GR’ GA and ﬁ)a components
defined by
* _ . . . _ 2
AgR = AgR minus the terms in JZO’ J30, J40 and minus the term uE/R
* —
Ag}\ = Agx
ES _ . .
Ach = Ag6 minus the terms in JZO’ J30, and J40 ,
. > . . . . _ _ 18 CM _ -
the subscript (o) on Ag indicating evaluation at R = R, = IRs |, ¢ = Sor A= A0,

where >‘o’ the east longitude of the vehicle CM, is given by

)\0=OLO-01,P-w9'(t—t0) , 05)\05_2Tr

From the foregoing, the approximations to i?)gB and Kng, in the notation of

this paper, read as follows

> > % 2 (K,O) = (K,O) -
Fop & Fgp + Z FoR + Z Fos , (A-28)
K=0,2,3,4 K=2,3,4
v & (K,0) > (K,0) }
Mg % Mg + M (A-29)
K=0,2,3,4 K=2,3,4

The reader should be aware that the dependence of ng and MgB upon vehicle attitude

enters through the dependence of the unit vectors U, and n upon the Euler angles

specifying the orientation of the B-frame relative to tR}?e S-frame. One should notice
also that it has not been necessary to introduce an additional reference frame (an
"orbital" frame whose attitude relative to the S-frame also changes); and therefore,
no additional attitude reference angles, thereby circumventing the need to transform
the inertia matrix. The more prominent writers on the subject of gravity torque have
used an orbital reference system (such as that alluded to) in defining "attitude devia-
tion" angles in terms of which they expressed the potential function (via the trans-
formed inertia matrix) and subsequently differentiated the potential function with
respect to these angles to get the components of gravity torque.
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Though the expressions for ng and MgB were derived with the entire vehicle
system in mind, they are applicable to any component (as if the component were up
there alone) by a proper interpretation of the symbols, that is, by an appropriate
alteration and/or change in the meaning of the symbols. In particular, they can be
made to apply to the ith flexible appendage of the space station model described in
Section 1, and use will be made of them in writing the contribution of gravity to the
equation corresponding to the coordinate ei (associated with the it-h flexible appendage
and denoting the rotation of that appendage, as a whole, relative to the rigid central

carrier).

The symbol ng, denoting the i-resolution (see Section 2 for the definition of
the X.Vi% frame) of the Earth's gravitational force on appendage i alone, presents*¥

itself in the equation corresponding to the coordinate 8 - On introducing the symbols

[

m; = mass of flexible appendage

(Xg*i )(o) = Kg* evaluated at R=R ., » = x.., § = 6§

f{SCMl = [XSCMI, YSCMI, ZSCMI]T = position referred to the S-frame of the CM
of flexible appendage i (in its deformed
state)
oy = tan_l(YsCMl/XSCMl) = right ascension of the CM of the flexible appendage i
(0 < a. < 2m
oi
85 = sin_l(ZSCMl/]§SCM1|) = sin~ 1(ﬁiT ﬁR .) = declination or geocentric latitude
of the CM of appendage i
(- /2 < aoi < m/2)
}‘oi = oy T ap - wg(t - to) = east longitude of the CM of appendage i
(0 < A . < 2m
oi
ﬁ . = E T ﬁ CMi = i - resolution of R CMi (see Section 3)
oi i s s
_ _ 13 CMi
Roi - lRoi] h |Rs |
YRoi ~ ﬁoi/R01

B, =T. T ﬁs = i-resolution of Ks (see Sections 2 and 3),

104  **As one factor of a scalar triple product.




it should be obvious, without recourse to the method of deriving (A-28), that

= ~ T _ T > % = (K,o0)
Foi & Ty T laglgy [-04i1¢ gy {mi (Agi )(o)} DY FoRri

K=0,2,3,4
2 (K,0) -
D LU (-0
K=2,3,4
the ngi(k’o) and ngi(k,o) in equation (A-30) being found by simply replacing m,
N > . . : z (k,0) 7 (k,0)
Ro’ Up,» N, sin 60, D , and Tr(D) in the expressions for FgR and Fch

- - . i i . i.
by mi, Roi’ uRoi’ ni, sin 6oi’D , and Tr(D ), respectively. The symbolD is to

be interpreted as the inertia matrix of flexible appendage i (in its deformed state)
referred to the axes xiyiz{ defined in Section 2 (recall that the axes xiyizi, though

oriented as X;V;%;5 have origin at the instantaneous CM of flexible appendage i).

Also, appearing (as one factor of the scalar product of two vectors) in the
equation corresponding to the coordinate 8 is the symbol M)gi representing the
i-resolution of the gravity torque on flexible appendage i alone about its instantaneous

CM. By a direct application of equation (A-29), one has immediately the approxima-

tion
Py > K,o = (K,o
M % Y MgRi( Y My s ) (A-31)
K=0,2,3,4 K=2,3,4
the expressions for the MgRi(k,O) and —lﬁgéi(k’o) being obtained from those for
v (k,0) (k,0) . > >
MgR and Mgd by merely replacing RO, uRo’ n, sin 60, Dand Tr(D) by
R ﬁRoi’ 'ﬁi, sin 601’[]1 and Tr(l:ll), respectively.

In the equation corresponding to the coordinate ei the terms in F i and Mgi
can be combined to give the expression

?T > (0) 1) =)y , F -
i {Mgi + (8 + ¥ n) x ng} , (A-32)
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which, after some reflection on the matter, one should recognize as the xi component
of the gravity torque on flexible appendage i alone about the origin of X,y;%;> (see

again the coordinate system definitions of Section 2). In the expression (A-32), the
> (0)

vector JL

»(1)

is the position vector, referred to X;¥;%; of the CM of appendage i when

(i)

0 that is, when appendage i is undeformed; n is the Ni X 1 column matrix
of generalized bending displacement coordinates nll, nlz, ni\]i (functions of time to
be determined); and the 3 x Ni matrix \P(l) has for its jth column the column matrix

1,{_)} ) defined by

I
—
Z

*(‘)-m}— / D dm N (A-33)

(m,)
1

th column of the undamped modal matrix <1>(1)

the 3 x 1 column matrix Z].(i) being the j
associated with flexible appendage i, i = 1, ... NA. The problem of deciding the
number Ni’ that is, an adequa.te number of mode shape functions ;j(i) to include in
the truncated modal matrix <I>(1), will not be addressed in this paper since suitable
criteria for selecting the modes to be accounted for have been the subject of investi-
gation by more learned men whose work will be found in the literature. It should be
remarked (if not already clear to the reader) that it is herein supposed that ? ].(i) is
a function of position referred to the i-frame so that one could write (in the usual

functional notation)

P (X552
e D=3 @y =| o (x,7.,2) j=1 N
. ]y l’ i’ i ’ 5 e

e (xi,yi,zi)

106




APPENDIX B

ON AERODYNAMIC FORCE AND AERODYNAMIC TORQUE

At space station altitudes, the flow regime is, presumably, free molecular flow.
Following the development in Reference 10 pertinent to such a regime, the aerodynamic

force, in the notation of this paper, is given by

- (x)
dF ypro |
= _ (v) _
FaERO ~ / dF s gro (B-1)
(AL)
' dF (z)
|“YAERO ]

where the subscript AT on the integral sign indicates that the integration extends

over the vehicle surface* and

aF {8 = (1/2) o V2 { [0, (s, vy, + *

F AERO g T ez vge) T (2 o) e

2 Yo¢l

e. (1 + erf e.8) + exp (-¢2 8% +l§(2-o)(1+erf S)
2 ) p 2 2 n )

S v/m 2S
oY ! eq VT
n ‘2 w 2
+ 2___5 T [ S (1 + erf e:zS)
+ 2 exp (—522 sz)]} dA , E=x,y,2z . (B-2)
S

The symbol Py denotes local atmospheric density. VR is the magnitude of the relative

velocity vector, v herein defined** by

R,

*The vehicle surface is here presumed a convex surface, thereby ruling out the
effect of molecules reflected from other parts of the body upon the force on a
differential element of surface area.

**Note the tacit assumption that the velocity of all points of the surface is the same
as that of the vehicle CM.
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) N T = T (S"B) ’ (B—B)

The €1 i=1, 2, 3, are the direction cosines of the relative velocity vector in the
local coordinate system, the local y-axis being directed as the inward normal to the
surface and the local x and z axes tangent to the surface with arbitrary (but
sensibly chosen) directions. If TBL = T (B+LOCAL) denotes the rotation matrix
defining the transformation from the B resolution of a vector to its resolution along

the local axes, then the € i=1, 2, 3, are determined by

;
[ 1 N
R
e | =T (——) : (B-4)
2 BL \ V,
€3J

The triples Ylg’ ng’ Y3 & =x, Yy, z, are, respectively, the direction cosines of

the unit vectors ?, T, and ¥ in the local coordinate system, that is,

le1 1]

Yox = TBL i-= TBL 0 (B-5)
Y3X. b 0‘

Y1y [ 0

Y2y = TBL j= TBL 1 (B-6)
LY3Y 'OJ

[ 1

Y1, 0

Yoz | = Ty K= Tgy [0 (B-7)
L Y3z. 1
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The symbols T;N and Ti denote, respectively, the surface temperature and tempera-
ture of the incident molecules. The dimensionless quantity S, called the molecular
speed ratio, is defined by

S =V /V2RTi' ,

R

the symbol R denoting the appropriate gas constant. Current best estimates of the
tangential and normal reflection coefficients, op and o, respectively, restrict both to
the range 0.8 to 1.0, completely diffuse reflection corresponding to o =0, = 1.
These dimensionless coefficients are also called momentum accommodation coefficients

and sometimes momentum exchange coefficients.

The symbol erf (EZS) denotes the error function with argument ezs, that is,

9 -X
erf (e:zS) = f e dx

T

In a simulation program, the parameters Pyg and Ti' should be available from
atmosphere tables based upon an acceptable atmosphere model while the assumption of

a constant T w' would not be unlikely.

From equations (B-1) through (B-7), it should be obvious that FAERO has the

B-resolution as does the aerodynamic moment, M AERO’ given by equation (B-8).

(x)
dF sgRO
M - 2 x dF = ‘f 2x |aF, W (B-8)
AERO AERO AERO
(A7) (Ap)
dF (z)
AERO |

wherein T denotes the position referred to the B-frame of the point of application of

dF s gro-
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Except for plane and cylindrical surfaces, the surface integrals in equations
(B-1) and (B-8) defy closed form evaluation. In the case of conical surfaces and
spherical segments, certain simplifications are possible, but even after such simplifica-

tions are made, there remain integrals which yield only to numerical methods.

As pointed out in Reference 10, a body in free molecular flow does not alter
the flow, thereby permitting one to subdivide the body into a finite number of "simple"
bodies (flat plates, cylinders, cones, etc.), determine the contribution of each part
to E and

AERO
tion.

MAERO’ and then combine the individual contributions by simple addi-

In the reference cited above (Reference 10), the development of a general
expression for the differential of force coefficient corresponding to a prescribed
direction is followed by the development of expressions for the normal force
coefficient, axial force coefficient, and moment coefficient pertinent to a flat plate,
a circular cylinder, a right circular cone frustum, and a spherical segment, the
developments being valid for complete diffuse reflection. In the notation of this

paper, the differential of the force coefficient C_ corresponding to the spacecraft*

3
¢-axis direction (£ = x, y, z) is obtainable from equation (B-2) by dividing both of
its members by 3 Py VzR AREF (AREF denoting a reference area), setting op = 0 = 1,

and replacing Tw' by Tr' (the symbol Tr' denoting the temperature of the reflected

molecules), the result being

_ 1
dCE = K—R’E—F { (61 ’Ylg + 62 ’Y2E + E3 ‘\{3€) [62 (1 + erf Ezs)
Y
+ exp (—52 Sz)] + _28 (1 + erf &,9)
2 2 2
T 2S5
Yo ! £ e 9
+ 28 /ﬁ:;f_' [ s— (1+erf e + §1§ exp (-e5 SO} aa , (B-9)

E =X,Y¥, Z

*One should be aware that the spacecraft ¢-axis direction does not, in general,
coincide with the "local" £-axis direction,
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In Reference 10, the development of equation (B-9) precedes that of (B-2)

which follows from (B-9) via introduction of the reflection coefficients oA and 0o the

purpose of the reflection coefficients being to admit both specular and diffuse reflec-

tion (complete specular reflection is realized when op = oy = 0).
Once the dimensionless coefficient CE is known, the force component F AE(R%()) is
found via the familiar equation
F, &) = (yzyc. o v2 A E=X,y, 2 (B-10)
AERO g "a- R "REF ° > :

If CE and Cn’ £ # n, denote, respectively, the force coefficients pertinent to

the B-frame g-axis and n-axis directions, then the differential, dag, of the moment
coefficient (~3C pertinent to the B-frame z-axis, the g-axis being orthogonal to both the
and an.

_ 3
Subsequent integration then gives C;’ which determines the z-component of M

g-axis and the n-axis, is expressible in terms of the differentials dC

AERO
in accordance with

() _ 2 X
Magro = (1/2) oy V'g € Appp Lpgr - (B-11)

the symbol LREF denoting a reference length.

; . : . -~
An alternate expression (see References 9 and 12) for BAERO’ somewhat more

tractable than (and deemed "inferior" to) that above is the following:

pacd 2 _ _ - . - 2 -
FAERO v Pa VR / [C2 °n t) ('Q'V ’Ln) Qn
(AL)

+ o, (,Qv . ILn) SLV] dA . (B-12)

In equation (B-12), both the unit vectors En and Ev are presumed expressed
on the B-vector basis, the vector En being the unit outward normal to the differential
element of surface area dA and J_L)V defined by

(B-13)

the VR in equation (B-13) being the negative of that defined by (B-3).
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APPENDIX C

ON THE VECTORS FSOLAR AND MSOLAR

References 11 and 13 (among others) provide the following expression for the

force attributed to direct solar radiation

—

FSoLAR = PSOLAR / - [(1+cC ) cos &+ (2/3) C 4]0
(Ap)

+ [(1 - C_) sin 8] 7} cos 8 dA . (C-1)

In equation (C-1), the unit vectors N and 7 define, respectively, the outward
normal and tangential directions to the differential element of surface area dA; the
angle 8 is the angle between the incident ray and n; the symbol Crs denotes the
coefficient of specular reflection (the fraction of incident radiation reflected specularly)
and Cr d is the coefficient of diffuse reflection (the fraction of incident radiation
reflected diffusely). The unit vectors n and T are here presumed to have the
B-resolution so that FSOLAR too has the B-resolution. The value assigned to
PSOLAR’ the solar radiation pressure, depends upon the vehicle's position. If the
vehicle lies within the Earth's umbra P
bra, 0 < P

SOLAR ~ 0; if the vehicle is within the penum-
SOLAR * (MAXIMUM SOLAR RADIATION PRESSURE IN VICINITY OF
EARTH); and if the vehicle lies in neither umbra nor penumbra, the value assigned
to PSOLAR in a simulation program is likely to be its value at 1 AU (one astronomical

unit).

Regarding equation (C-1), it should be remarked that it does not account for
the effect of radiation reflected from one vehicle part upon another part or shading
of one part by another. Furthermore, it should be obvious that the integration need
not extend over the entire surface area but only over that part exposed to direct

solar radiation.

Except for very special configurations, not likely to be encountered in practice,

a closed form expression for the surface integral in (C-1) is out of the question.
—

However simple the surface configuration may be, the evaluation of F will

SOLAR
probably always rest upon numerical methods for evaluating integrals.
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With ¥ denoting (as usual) position referred to the B-frame, having origin at
the vehicle CM (see Section 2), one can define the solar radiation torque about the
system CM by (C-2).

MgoraR = PSOLAR f rx {-[(1+C_,) cos 8+ (2/3) Cql 1
(Ap)

+ (1 - C.) sin 6] 7} cos § dA . (C-2)

Assuming it possible to subdivide the surface area into a finite number of

"sub-areas" on the i'Ch of which is exerted the resultant solar radiation force FS%)L AR
. . g -> . . >
at the point with position vector rcpi relative to the B-frame, one can write MSOLAR
as the sum of vector products
- _ -> —)(1) _
MsoraR = 2o Tepi X FsoLaR - (C-3)
i

In general, one can go no farther than the integral expressions of equations (C-1)
and (C-2).
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To find an expression for r

center of mass to write

APPENDIX D

ON THE VECTOR ?c

—

cm

/rdm: f(r—rcm)dmzo

(m) (m)

, one has only to invoke the definition of the

subdivide m as indicated by the subscripts on the integral signs in equation (4-16),
and integrate after substituting from (4-25), (4-28), (4-31), (4-34), (4-35), (4-37),
(4-39), (4-41), (4-42), and (4-43), attention being paid to (4-52.1) and (4-52.2) in

integrating over m,.

The result is expressible as

g @ 20,

Tpj

NA
= 2 (o) 1 ~T & >() |, &~
'em " Tem  tm )3 m, (T35 - Ty ) 477 + T
i=1
NP NSE
+D mp; Epy hpg - 2 mes Y (Mg~ Agio)
i=1 i=1
where ¥(O) TT and X are given b
CM "’ “io Eio gl y
NSE NP
2 (o) _ 1 f = z -> =
'cM T m Fam o+ D, mp (B - S Apg) * 2 mps
(m +mf) i=1 i=1
NA NSDOF
2 =T = (o) = y =
* Z m; (r; + g 2 (m'Gi Tgi * Mi Tgi)
i=1 i=1
N2DOF
+ ) (mog Fog * Mg Tg * Mg *
i=1
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(b-1)

NR
+ Z Mgi TRi
i=1

(D-2)




io i 7e.=0 ~ i
i

=y

(Apdg =g =0

Eio B .=
yi “pi
The integral in equation (D-2) is herein supposed a known function of time so

-
that ?cm(O) is presumed a known function of time.

Assuming the time derivatives of m negligible leads to the approximations

. NA
5 3 .T L T iy spo
~ = (o) |1 = 2> (0) 1) =) ~ 1) 3>
Tom ¥ Toy ot | 2 m (T GO v @ EOy L T @ 5O,
i=1
NP NSE .
+D, mp; Epp fpy - D mpg bp Ap (D-3)
i=1 i=1
. ) NA T .
—> .. . . * . “
=~ ~ (o) 1 ~ > (0) (1) =) ~ 1) -
Tom ® Tyt E Zmi[Ti A e O L A
i=1
. i NP NSE i
=~ 1 =@ S re
# T e A D mpy Epy Ky - 2 mgy gy Ig| . D-9)
i=1 i=1
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APPENDIX E

ON THE MATRICES l] 0’ AND It

Among the symbols necessary to a "working" expression* for the inertia matrix

D there are some which have not yet been defined. These include the following
(w1th the exception of qE whose definition will be repeated for ready reference):
q , the position, relative to the B- frame, of the CM of the rigid central carrier;
Eio, the p081t10n vector, relative to the B-frame, of the CM of the rigid central
carrier; CM’ the 1nert1a matrix of the rigid central carrier referred to axes (oriented
as both the B and B frames) with origin at its CM; If, the inertia matrix of the fluid
referred to the B-frame (further remarks regarding If will be made later); and the

tors ., Qris Qris qpis Aeis oss Qeapes dre and g, denoti tively, th
vectors d;, dp;s dgis dpi> 9gi- qgi’ dog’ 9jg’ an qg, enoting, respectively, the
instantaneous positions relative to the B-frame of the CM of flexible appendage i, the

CM of sw1ve1 engine i, the CM of rotor i, the 1th

point mass, the CM of the gimbal
of the i'" SDOF CMG, the CM of the gyro element of the ith spor CMG, the CM of
the outer gimbal of the 2 DOF CMG in question, the CM of the inner gimbal of the

2 DOF CMG in question, and the CM of the gyro element of the 2 DOF CMG in
question (the words "in question" being used to adhere to a previous agreement that
an additional subscript i, or superscript i, would be suppressed on all symbols relat-
ing to a 2 DOF CMG). For a specific vehicle configuration, éo will be a known con-
stant vector and T%M a known matrix of constants, while If, though variable, "can be
determined." By simply stating that If is "susceptible to being determined," the
author has tacitly avoided the construction of a mechanical system whose motion
duplicates the response of the fluid. Introduction of a mechanical analog would, of
course, increase the number of system coordinates and require that more terms be
added to both the translational and rotational equations. Knowing the rate at which
mass is depleted through propellant consumption and assuming negligible sloshing, one

might define If adequately via tables with time as argument.

In terms of symbols already defined, the position vectors (referred to the

B-frame) of the previous paragraph must be given by

*By "working" expression is meant one which can be put to practical use such as
serving as a guide to a programmer in coding a subroutine (of a simulation program)

whose function is the construction ofD
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o) o} CM
A S L A OO IO I N
94 =5 " Tfem T Y1 YN n ’ e ’
9gi i " fcm " *Ei fEi 0 1T L NSE -,
dpi =Tp; ~Tcm -+ 1=1L . NR o,
9pi ~'pi " Tom T fpitp 0 1L ... NP
aGi =Tg ~Tgy » 1=1, ... NSDOF
qgi = rgi " Tem i=1, . NSDOF s
— _= o=
906 ~ Yoc " Tcm
g = Tie ~ Tom CORRESPONDING TO EACH 2DOF CMG
- = _ =2
g = g ~ Tom

In deriving an equation for the computation of the inertia matrix I' (defined in

Section 4 in the paragraph containing equation (4—‘69)), the author has exploited

certain properties of the operator S introduced in Section 4 (see equations (4-69.3)

and (4-69.4) and the definition following).

expressed by the relations
S (A =-8 & =37
SE+B) =8 (X) +3 (B)
S @ 8@ =18 @8 &T

N

The properties alluded to are among those

N
8 &Y, a8 @)=Y as®&s @

i=1 i=1
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d - _ i -

Sdem=fS(K)dm

=

2 s (F,, )1} :s{(—%>2§ (Fi,t)}
an]. an].

It is not difficult to show that

N. N. N,
1 T 1 1
i i _ i ] i i i, i i1 i
CT DT Do IR DI D X
j=1 j=1 K=1
i=1, ... NA,

use being made of equations (4-69.3) and (4-69.4). The notation in equation (E-1)

should be self explanatory, that is, one should strongly suspect that the symbol

(11)_)(1) _, simply denotes the inertia matrix of appendage i, referred to X,V;%5 when
n- =0

the appendage is in its undeformed state which it assumes when ﬁ’(l)=3. The matrix

(Il)_)(i) _ will, for each i, be a known matrix of constants (provided by the manu-
n"=0

facturer of the appendage).

Having found Ii via equation (E-1), the matrix Dl is determined by
Ul =1 - mi S (EI(O) + \1,(1) ﬁ)(l)) s (_Ei(o) _ ‘{’(1) a’(l)) , (E-2)

Hl being the inertia matrix of appendage i referred to axes x{yiz{ which have origin

at the instantaneous CM of the appendage and are oriented as X2

In writing equation (E-2), a direct application was made of what might be

called the "generalized transfer theorem for inertia matrices" which is expressible as

T R .
Ueyz =7 Ui P4 M 3@ 3¢ (E-3)
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wherein Enc is the inertia matrix of an arbitrarily shaped body of mass M referred
to right-handed rectangular axes ¢ng with origin at the CM of the body which has
position vector a relative to the right-handed rectangular axes xyz; j =7 (xyzr&ncg)
denotes the rotation matrix defining the transformation from the xyz vector basis to
the g¢nt vector basis; and nyz is the inertia matrix of the body referred to the
axes xyz. The expression S(a) S(-@) in equation (E-3) replaces its equivalent,

Qr o I3x3) - g T, of the author's previous work (Reference 1), the symbol
I(3x3) denoting the 3x3 identity matrix. Admittedly, use of the "S" expression is

the more convenient.

Repeated application of equation (E-3) leads to the following equation for the
system inertia matrix D(re’ferred to the B-frame)

NA
f ~ - - ~T i =~ - -
0=1f - R * My 8@ 5¢ap + 2, & P T, + m 8@ S¢-3p)
i=1
NSE NP
T Ei N = my. S(dp;) S(-dp:)
20 (Tgy I Ty + my; St SCagy + 3, et Sps Pi
i=1 i=1
NR NSDOF
T Ri > . T .Gi
2, (Tpy I Tpy + mpy SGpp SCgi+ 2, i1 19 1,
i=1 i=1
+mly S@a) SCan) + To B T .+ m . S(3) 8¢-4._0)
Gi Gi Gi gi gi gi gi gi
N2DOF
T .0G . S T .IG
+ 2. {Tog 10 Thog * Mog Stog) SCdgg) + Tig 1'% Thig
i=1

- N d T g‘ - _—> _
+ g SWdg) 8(-Gig) *+ Ty I° Ty + my, S(d,) S(-d )} (E-4)

(1)

By direct differentiation of equation (E-4), there follows, after further manipu-
lation (giving due regard to the definitions and relations in Section 3 and to the

relevant properties of the operator S),
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(=1 +m, ®@) 83, + 8@, S-d.)
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+ 2, (TX ] T+ 1 @l -0t ah T, + m, (S SC-3 + Sd) S¢-§H1

i=1

NSE

> Ty, Gig, 1 - fH Gp) Tgy + mg; [8(dgp) SCdg) + S@g) SC-ag1)
i=1

NP NR
+ Z mPi {S(apl) S(_api) + S(apl) S(-HPI)} + Z mRi {S(ERI) 5(’6Ri)
i=1 i=1
NSDOF . ‘
+ 8(dp,) SCdgl+ {Tgi (5 S S Q(T}i) Tgi
i=1

+

5 = > 5 T , T .gi ,gi T
mai [Sg) SCdg) + S@gp BCdgpl + T (g 18 - 18 2 T

+

T T g .gi T I e N >
Tg; (9G4 1 I5° Qe Ty + m:gi [S(qgi) S( Agi)* S(qgi) S( gl

N2DOF

T T OG IG T g
+ Z {Tgog [8gg 77 + 17 + T I

oaic I Togig?
i=1

_ (19€ , [IG T

OGIG

T

g T
" Togia? 26! Trog * Trig

+ T [QITG alC + 18y

_ IG g, T T T.g g T
(I +I)QIG] TBIG+TBg (QgI I Qg) TBg

+

oG Blhag) Stdog) + S@yg) S-igg)]

+mg [8(d1g) SC-d1) + 83 ) S(-d; )]

<+

mg, [S(qg) S(—qg) + S(qg) S(-qg)]}(i)

(E-5)




Regarding the matrix if, all that will be said is that it is supposed here that a
routine method exists for its computation.* As for the time derivatives of the position

vectors, it is easily seen that they are given by

gl'*iz_;CM {\y(l) ()+S2 [2( ) ¢y 2y
61;Ei - _%CM tgi fg

éPi - _:I%CM + Epg —)P1

El;g = -%CM , &£ =0, Ri, Gi, gi, OG, IG, g,

while from equations (E-1) and (E-2), one has

Ni N1 Ni
DI LT LDED ) DT R
=1 i=1 K=1

[-li i em mo® O 5@+ v D O,

FSEO + v D 30) g D 3Dy,

* Among the engineers engaged in digital simulation, few, if any, will be inclined to
retain the term if in the expression forD , not to mention certain of the other
terms. In fact, most will modify the moment equation by deleting the term DEB.
One who is reluctant to retain all the terms belonging to JB should be cautioned
not to discard terms which could be of major importance, in particular the CMG

terms.
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APPENDIX F

ON TIME INDEPENDENT INTEGRALS

Appearing in the moment equation, the bending equations, and the equation
corresponding to the system coordinate 6, are terms having as a factor one of the
time independent integrals defined below, their independence of time being a conse-
quence of the assumption that the mode shape functions ‘;'(i)’ i=1, ... Ni’ are
invariant under a rotation of flexible appendage i relative to the rigid central carrier.
In a simulation program based upon the equations of this paper (and pertinent to a

specific vehicle), those integrals would need to be evaluated but once.

>(i) _ 1 f Z (1) . .
tp]. —nTi *P]. dm , j=1, ...Ni , i=1, ... NA
(mi)

Ai _ > > (i) s _ s _
Coj = frixspj dm , j=1, ...Ni , i=1, ... NA

(m;)
¢l = 5 (1) > (i) - . 2ai Cwo= .
CK]’ [ SPK X ¢j dm = CjK , i, K =1, ...Ni , 1=1, ... NA

(m;)

_ S(ri) S( W]. ) dm = j].r , (see equation (4-69.5))
(m;) j=1, ...N, , i=1, ... NA

. : . ;T
j;{ = f S(Jj(l))S(J”K(l)) dm = S5, §,K=1, ...N, , i=1, ... NA

] Kj 1
(m,)
i _ >T - (i)
Doj = f r; w]. dm
(m.)
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1

/

(mi)

¥ e dm = D]_ir
50 30" an - ol
;j(i)T ;i ?iT dm

;iT I—:l “"!,’.(i)T dm # Djirxi-
J]-(i)T I_'; ;K(i)T dm

: T
T - (1) - (1)
rs ¢k ¢].

T . .
> 2 @A) 2> @)
¥ ¥k g

dm #Dl

T

. T
jKr

dm #D

i T
1Kj

’

i
i, K,
i=1,

. NA
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